M.Tech (RF and Photonics)

Semester I

Code

Course Name

L-T-P

Credits

EE 540

Advance Electromagnetic Theory & Antennas

3-0-0

6

EE 541

RF Circuits and Systems

3-0-0

6

EE 542

Fiber Optic System

3-0-0

6

EE 543

Optical Systems Laboratory

0-0-3

3

EE/PH 6xx

Elective I

3-0-0

6

EE 6xx

Elective II

3-0-0

6

 

15-0-3

33

Semester II

Code

Course Name

L-T-P

Credits

EE 544

Photonics Devices and Circuits

3-0-0

6

EE545

Computational Electromagnetics

3-0-0

6

EE 546

Optical Networks

3-0-0

6

EE 547

Antennas, RF and Microwave Laboratory

0-0-3

3

EE/PH 6xx

Elective III

3-0-0

6

EE 6xx

Elective IV

3-0-0

6

 

15-0-3

33

Semester III

Code

Course Name

L-T-P

Credits

EE 698

Project Phase-I

0-0-24

24

Semester IV

Code

Course Name

L-T-P

Credits

EE 699

Project Phase-II

0-0-24

24

 

 

EE 540   Advanced Electromagnetic Theory and Antennas (3-0-0-6)

 

Course contents:

 

Review of Maxwell’s Equation and boundary conditions; time harmonic electromagnetic fields; vector potentials; electromagnetic theorems and concepts: uniqueness, image theory, field equivalence principle, reciprocity; Plane, cylindrical and spherical waves ;radiation and scattering ; dipole antennas and arrays, aperture antennas: radiation from open ended rectangular and circular waveguides, horn antennas, parabolic antennas, slot antennas and arrays, microstrip antennas.

 

Texts/References:

 

1. C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, 2009.

2. R. F. Harrington, Time Harmonic Electromagnetic Fields, McGraw Hill, 2001.

3. C.  A.  Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.

4. R. E. Collin, Antenna and Radio wave propagation, McGraw Hills, 1985.

5. C. A. Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons, 2009.

6. R. J. Marhefka, A. S. Khan and J. D. Kraus, Antennas and Wave Propagation, Tata McGraw-Hill Education, 2010.

7. M. Sachidananda and A. R. Harish, Antennas and Wave Propagation, Oxford University Press, 2007.

 

 

EE 541   RF Circuits and Systems                (3-0-0-6)

 

Course contents:

 

Various parameters of interest in RF systems: NF, IIP3, SFDR etc. ; Scattering parameters of n-port networks; Various implementation of transmission lines in  RF/microwave circuits; Review of some high speed RF devices; Microwave passive circuits: filters, impedance transformers, hybrids, isolators etc.; Microwave active circuits: amplifiers, mixers, PLLs; Phase shifters

 

Texts/References:

 

1. D. M. Pozar, Microwave Engineering, 4th Edn., Wiley, 2012.

2. C. Bowick, RF Circuit Design, 2nd Edn., Newnes, 2007.

3. R. C. Li,  RF Circuit Design, 2nd Edn., John Wiley & Sons, 2012.

4. G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd Edn., Prentice Hall, 1996.

5. T. H. Lee, Planar Microwave Engineering: A Practical Guide to Theory, Measurement, and Circuits, Cambridge University Press, 2004.

6. D. M. Pozar, Microwave and RF Design of Wireless Systems, John Wiley & Sons, 2001.

 

 

EE 542      Fiber Optic Systems           (3-0-0-6)

 

Course contents:

 

Review of semiconductor physics - radiative recombination; LEDs, optical cavity, DH and other lasers; P-I-N and APD detectors; detector noise; Optical fibers - ray and mode theories, multimode and single-mode fibers, attenuation, dispersion; Gaussian beams; Power coupling, splices and connectors; Fiber optic transmitter and receiver designs, Link analyses; Fiber optic sensors; Optical Amplifiers; Solitons in optical fibers.

 

Texts/ References:

 

1. J. C. Palais, Fiber Optic Communication, Pearson Prentice Hall, 2013.

2. S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, Pearson Prentice Hall, 2011.

3. J. Powers, An Introduction to Fiber Optic Systems, TMH 2010.

4. G. Keiser, Optical Fiber Communication, McGraw-Hill 2013.

5. G. Keiser, Optical Communications Essentials, McGraw-Hill, 2013.

6. G. P. Agrawal, Fiber-Optic Communication Systems, John Wiley & Sons, 2011.

7. J. M. Senior, Optical Fiber Communications: Principles and Practice, Pearson, 2011.

8. B. P. Pal, Fundamentals of Fiber Optics in Telecommunication and Sensor Systems, New Age International Publishers, 2006.

 

 

EE 543      Optical Communication Laboratory             (0-0-3-3)

 

 

Course contents:

 

Experiments on fiber optic analog Link; Measurement of numerical aperture and losses in optical fiber; characterization of LED and detector; experiments on frequency modulation and demodulation using fiber optic link; setting up fiber optic voice link and PC to PC link using fiber optic fiber etc.

 

Texts/ References:

 

 

1. J. B. Saleh and M. Teich, Fundamentals of Photonics, Wiley-Interscience, 2nd Edn., 2007.

2. S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, Pearson Prentice Hall, 2011.

3. G. Keiser, Optical Communications Essentials, McGraw-Hill, 2013.

4. G. P. Agrawal, Fiber-Optic Communication Systems, John Wiley & Sons, 2011.

5. J. M. Senior, Optical Fiber Communications: Principles and Practice, Pearson, 2011.

 

 

EE 544      Photonics Devices and Circuits                   (3-0-0-6)

 

Course contents:

 

Optical properties of semiconductor material, Diode lasers: steady state characteristics, dynamics, and noise, Dielectric waveguides, perturbation and coupled mode theory, Photonic crystals, metamaterials, plasmonics, Integrated optics and photonic integrated circuits, Optical modulators, Photodetectors and solar cells Optoelectronic integration

 

Texts/References:

 

1. B. Saleh and M. Teich, Fundamentals of Photonics, Wiley-Interscience, 2nd Edn., 2007.

2. L. A. Coldren, S. W. Corzine and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2nd Edn., Wiley, 2012.

3. A. Yariv and P. Yeh, Photonics, 6th Edn., Oxford, 2007.

4. P. Bhattacharya, Semiconductor Optoelectronics Devices, 2nd Edn., PHI, 2009.

5. R. G. Hunsperger, Integrated Optics, Springer, 1995.

6. W. T. Silfvast, Laser Fundamentals, 2nd Edn., Cambridge, 1993.

 

 

EE 545      Computational Electromagnetics                 (3-0-0-6)

 

 

Course contents:

 

Review of electromagnetic theory, Introduction to computational electromagnetics, Finite difference methods: Basic components of finite difference solvers, Wave equation (1-D FDTD method), Laplace’s equation (2-D FDM), 2-D FDTD method, 3-D FDTD method, Perfectly matched layer, Method of Moments: Integral formulation of electrostatics, Capacitance problem in unbounded 2D region, Electromagnetic scattering, Scattering on thin wires, Analysis of microstrip antennas and circuits, EM absorption in human body, Finite element method: Overview, Laplace’s equation (1-D FEM), Boundary condition for FEM, Helmholtz equation (2-D FEM), Finite element method-boundary element method, FEM/MOM hybrid, Time domain FEM, Fast multipole method

 

Texts/References:

 

1. K. F. Warnick, Numerical Methods for Engineering, SciTech, 2011.

2. A. Bondeson, T. Rylander and P. Ingelstrom, Computational Electromagnetics, Springer, 2005.

3. M. N. O. Sadiku, Numerical Techniques in Electromagnetics, CRC Press, 2001.

4. J. M. Jin, Theory and Computation of Electromagnetic Fields, John Wiley, 2010.

5. D. B. Davidson, Computational Electromagnetics for RF and Microwave Engineering, Cambridge University Press, 2011.

 

EE 546      Optical Networks                 (3-0-0-6)

 

Course contents:

 

Optical communications: Introduction to basic optical communications and devices. Optical multiplexing techniques - Wavelength division multiplexing, Optical frequency division multiplexing, time division multiplexing, code division multiplexing. Optical Networks: Conventional optical networks, SONET / SDH, FDDI, IEEE 802.3, DQDB, FCS, HIPPI etc. Multiple access optical networks, Topologies, Single channel networks, Multichannel networks, Single hop networks, Multihop networks, Multiaccess protocols for WDM networks, Switched optical networks. Optical amplification in all-optical networks. All-optical subscriber access networks. Wavelength routed networks and other special topics, Optical networks management issues.

 

Texts/References:

 

1. R. Ramaswami, K. N. Sivarajan and G. H. Sasaki, Optical Networks: A practical Perspective, Morgan Kaufmann Publishers, 2010.

2. B. Mukherjee, Optical WDM Networks, Springer, 2006.

3. R. C. Sivamurthy and G. Mohan, WDM Optical Networks: Concepts, Design And Algorithms, Phi Learning Pvt Ltd, 2002.

 

 

EE 547      Antennas, RF and Microwave Laboratory  (0-0-0-3)

 

Course contents:

 

Experiments in basic microwave measurements; passive and active circuit characterization using network analyser, spectrum analyser and noise figure meter; PC based automated microwave/antenas measurements; integration of measurement and design of microwave circuits.

 

Texts/References:

 

1. N. B. Carvalho and D. Schreurs, Microwave and Wireless Measurement Techniques, Cambridge University Press, 2013.

2. G. H. Bryant, Principles Of Microwave Measurements, IEE Electrical Measurement Series 5, 1993.

3. C. A. Balanis, Antenna Theory : Analysis and Design, John Wiley & Sons, 2009.

4. R. J. Marhefka, A. S. Khan and J. D. Kraus, Antennas and Wave Propagation, Tata McGraw-Hill Education, 2010.

 

-----000000----