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IWASAWA λ-INVARIANTS AND Γ-TRANSFORMS

Anupam Saikia1 and Rupam Barman2

Abstract. In this paper we study a relation between the λ-invariants of a p-adic measure and
its Γ-transform exploiting certain combinatorial identities. Along the way we also determine p-adic
properties of certain Mahler coefficients.
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1. Introduction

Fix an odd prime p. Let O be the ring of integers in a finite extension of Qp with a
local parameter π. We write Z×p = V × U where V is the group of (p − 1)st roots of
unity in Zp and U = 1 + pZp. Let u be a topological generator of U . The projections
from Z×p onto V and U are denoted by ω and <> respectively. We have an isomorphism
φ : Zp → U given by φ(y) = uy.

Let Λ denote the O-valued measures on Zp. It is well-known, (see e.g. [1]), that Λ is
a ring under convolution, and is isomorphic to the formal power series ring O[[T − 1]].
Explicitly, for x ∈ Zp, let

T x =
∞∑
n=0

(
x

n

)
(T − 1)n ∈ O[[T − 1]].

The power series associated to a measure α ∈ Λ is then defined by

α̂(T ) =

∫
Zp

T xdα(x) =
∞∑
n=0

bn(α)(T − 1)n

where

bn(α) =

∫
Zp

(
x

n

)
dα(x).

A classical theorem of Mahler states that any continuous function f : Zp → Qp may
be written uniquely in the form

f(x) =
∞∑
n=0

an(f)

(
x

n

)
,
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where an(f) ∈ Qp, an(f) 7→ 0 as n 7→ ∞. In fact

an(f) =
n∑
j=0

(−1)n−j
(
n

j

)
f(j). (1.1)

This theorem may be generalized to continuous functions f : Zp → K, where K is
any finite extension of Qp. Using this generalization, we obtain the following∫

Zp

f(x)dα(x) =
∞∑
n=0

an(f)

∫
Zp

(
x

n

)
dα(x) =

∞∑
n=0

an(f)bn(α).

Note that if O is the ring of integers of K and f : Zp 7→ O, then an(f) ∈ O.
For a ∈ Z×p , denote by α ◦ a the measure on Zp given by α ◦ a(A) = α(aA) for all

compact open subsets A of Zp. Also, for a compact open subset A ⊆ Zp, we let α|A
denote the measure obtained by restricting α to A and extending by 0.

The Γ-transform of a measure α is defined as a function of the p-adic variable s given
by

Γα(s) =

∫
Z×p

< x >s dα(x).

Splitting up the integral, and putting dα(ax) for dα ◦ a(x), we can also write

Γα(s) =
∑
η∈V

∫
U

< ηx >s dα(ηx) =

∫
U

xsdβ(x),

where
β =

∑
η∈V

(α ◦ η)|U ,

a measure on U .
Now the measure β may be viewed as a measure on Zp via the isomorphism φ:

β̃(A) = β(φ(A)).

It is customary to write dβ(uy) for dβ̃(y). Let G(T ) be the power series associated to

β̃, that is,

G(T ) =

∫
Zp

T ydβ(uy).

Then Γα(s) = G(us), so that Γα(s) is an Iwasawa function over O.

2. Iwasawa λ-invariants and Γ- transforms

The Iwasawa µ and λ- invariants of a power series

F (T ) =
∞∑
n=0

an(T − 1)n ∈ O[[T − 1]]

are defined by

µ(F (T )) = min{ord(an) : n ≥ 0}
λ(F (T )) = min{n : ord(an) = µ(F (T ))}
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For a measure α, we understand µ(α) and λ(α) to mean µ(α̂(T )) and λ(α̂(T )).
Let α ∈ Λ be a O-valued measures on Zp. Let u be a fixed topological generator of

U = 1 + pZp, and let G(T ) satisfy G(us) = Γα(s), so that

G(T ) =

∫
Zp

T ydβ(uy), where β =
∑
η∈V

(α ◦ η)|U . (2.1)

Note that β is a measure on U . We extend β to Zp by 0 and then we get a power

series β̂(T ) =
∑∞

n=0 bn(T − 1)n. Suppose that G(T ) =
∑∞

n=0 gn(T − 1)n. Sinnott in his
paper [4] proved that µ(G(T )) = µ(α∗ + α∗ ◦ (−1)), if α̂(T ) is a rational function of
T . Here α∗ = α|Z×p . It was Kida who first obtained a relation between the λ-invariant

of a measure and its Gamma-Transform with a fixed topological generator [2]. Later,
Nancy Childress proved the following results in her paper [1]:

Result 2.1. µ(G(T )) = µ(β).

Result 2.2. Suppose λ(G(T )) ≤ p, then λ(β) = pλ(G(T )).

She remarked that it would be interesting to know whether her methods can be
extended for larger λ(G(T )). Satoh obtained the same result without any condition on
λ(G(T )), but his approach was based on certain properties of Stirling numbers [3]. In
this paper we prove the following main result in the spirit of Childress.

Theorem 2.3. Suppose λ(G(T )) ≤ 2p, then λ(β) = pλ(G(T )).

We will prove this theorem exploiting certain combinatorial identities, which we
shall prove in the next section. Through our approach we also derive certain p-adic
properties of Mahler coefficients. Note that the relation between bm and gm is given
by the following result in Childress [1].

Result 2.4. If n ≥ ordp(m!), then bm ≡
∑n

r=0 grar(fm) (mod p).

Here, am(fn)s are the Mahler coefficients of fn(x) =
(
ux

n

)
=
∑∞

m=0 am(fn)
(
x
m

)
. We

will investigate p-adic properties of the Mahler coefficients am(fn). In order to study
the Mahler coefficients am(fn) we will require certain identities involving binomial
coefficients, which will be established in a combinatorial fashion in the next section.

3. Certain Combinatorial Identities

The following result was a crucial ingredient in the work of Childress [1].

Result 3.1.
n∑
i=1

(−1)n−i
(
n

i

)(
ti

n

)
= tn.

Here we will prove a more general result.

Lemma 3.2. For non-negative integers n, t, k, we have
n∑
i=0

(−1)n−i
(
n

i

)(
t(i+ k)

n

)
= tn. (3.1)
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Proof. The result is obvious for t = 0 or n = 0. So we assume n, t ≥ 1 and k ≥ 0. Let
N,N ′, T be sets such that N ⊆ N ′, |N | = n, |N ′| = n + k, and |T | = t. Let R be the

set of all n-subsets of N ′ × T . Clearly |R| =
(
t(n+k)
n

)
. Also, for a ∈ N , let Ra be the

set of all n-subsets A of N ′ × T such that (a, b) /∈ A for any b ∈ T . Obviously Ra is

the set of all n-subsets of (N ′ − {a})× T and hence |Ra| =
(
t(n+k−1)

n

)
.

For I ⊆ N , let RI be the set of all n-subsets A of N ′ × T such that (a, b) /∈ A for
any a ∈ I and for any b ∈ T . Clearly RI is the set of all n-subsets of (N ′− I)× T and
hence

|RI | =
(
t(n+ k − i)

n

)
, where |I| = i. (3.2)

If I = {a1, · · · , ai}, then clearly RI = Ra1∩· · ·∩Rai
. Thus |Ra1∩· · ·∩Rai

| =
(
t(n+k−i)

n

)
.

By inclusion-exclusion principle, we get

|
⋃
a∈N

Ra| =
∑
a∈N

|Ra| −
∑

{a1,a2}⊆N

|Ra1 ∩Ra2|+ · · ·+ (−1)i+1
∑

{a1,··· ,ai}⊆N

|Ra1 ∩ · · · ∩Rai
|

+ · · ·+ (−1)n+1|
⋂
a∈N

Ra|

=
n∑
i=1

(−1)i+1

(
n

i

)(
(n+ k − i)t

n

)
. (3.3)

Therefore,

|R−
⋃
a∈N

Ra| = |R| − |
⋃
a∈N

Ra| =
(
t(n+ k)

n

)
−

n∑
i=1

(−1)i+1

(
n

i

)(
(n+ k − i)t

n

)

=
n∑
i=0

(−1)i
(
n

i

)(
t(n+ k − i)

n

)

=
n∑
i=0

(−1)n−i
(
n

i

)(
t(i+ k)

n

)
. (3.4)

A function f : N → T may be viewed as an n-subset of N × T . Conversely, an
n-subset A ⊆ N × T defines a function f : N → T if and only if the cardinality of the
set {a ∈ N : (a, b) ∈ A for some b ∈ T} is equal to n. Therefore, it is not difficult to
see that there is a one-to-one correspondence between R −

⋃
a∈N Ra and the set of all

functions from N to T . Thus |R −
⋃
a∈N Ra| = tn, which proves the result because of

(3.4). �

Remark 3.3. The result (3.1) of Childress is nothing but lemma (3.2) with k = 0.

Lemma 3.4. For non-negative integers n, t with n > 1, we have
n∑
i=0

(−1)n−i
(
n

i

)(
ti

n− 1

)
= 0.



Iwasawa λ-invariants and Γ-transforms 5

Proof: Since n > 1, we have
(
n
i

)
=
(
n−1
i

)
+
(
n−1
i−1

)
. Using this and Lemma (3.2) for

k = 1, we get

n∑
i=0

(−1)n−i
(
n

i

)(
ti

n− 1

)

=

{
n∑
i=0

(−1)n−i
(
n− 1

i

)(
ti

n− 1

)}
+

{
n∑
i=0

(−1)n−i
(
n− 1

i− 1

)(
ti

n− 1

)}

= −

{
n−1∑
i=0

(−1)n−1−i
(
n− 1

i

)(
ti

n− 1

)}
+

{
n−1∑
i=0

(−1)n−1−i
(
n− 1

i

)(
t(i+ 1)

n− 1

)}
= −tn−1 + tn−1

= 0.

4. p-adic properties of Mahler coefficients am(fn)

Let us fix a topological generator u = 1 + t1p+ t2p
2 + · · · of 1 + pZp. Hence t1 is a

unit. It is not difficult to see that

(1 + T )u
p+n ≡ (1 + T )(1 + T p)nt1(1 + T p

2

)t1+
n(n−1)

2
t21+nt2 + higher order terms (mod p).

(4.1)

(1+T )u
n ≡ (1+T )(1+T p)nt1(1+T p

2

)
n(n−1)

2
t21+nt2 + higher order terms (mod p). (4.2)

Using these binomial expansions, we prove the following lemmas about the Mahler
coefficients am(fn) for different m and n.

Lemma 4.1. Suppose that 1 ≤ k < p and p2 + (k − 1)p ≤ m < p2 + kp. Then

ap+k(fm) ≡ 0 (mod p).

Proof: From (1.1), we have

ap+k(fm) =

p+k∑
j=0

(−1)p+k−j
(
p+ k

j

)(
uj

m

)
. (4.3)

But,
(
uj

m

)
is the co-efficient of Tm in the expansion of (1+T )u

j
. Clearly, if p2+(k−1)p ≤

m < p2 + kp and m 6= p2 + (k − 1)p, p2 + (k − 1)p + 1, then from (4.1) and (4.2) we

find that the co-efficient of Tm in (1 + T )u
j

is zero modulo p. Also, co-efficients of Tm

modulo p in (1 +T )u
j

are equal for m = p2 + (k− 1)p, p2 + (k− 1)p+ 1. Thus, to prove
that ap+k(fm) is zero modulo p when m = p2 + (k − 1)p, p2 + (k − 1)p+ 1, we need to
prove for m = p2 + (k − 1)p only. If k = 1, then

ap+1(fp2) ≡ −
(
u

p2

)
−
(
up

p2

)
+

(
up+1

p2

)
≡ −t2 − t1 + (t1 + t2) ≡ 0 (mod p). (4.4)
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Therefore, we assume that k > 1. From (4.1) and (4.2), we have(
uj

m

)
= co-efficient of Tm in the expansion of (1 + T )u

j

≡
(
jt1
k − 1

){
j(j − 1)

2
t21 + jt2

}
(mod p) if j < p (4.5)

and(
uj

m

)
≡
(

it1
k − 1

){
t1 +

i(i− 1)

2
t21 + it2

}
(mod p) if j = p+ i, 0 ≤ i < p. (4.6)

Now,

ap+k(fm) =

p+k∑
j=0

(−1)p+k−j
(
p+ k

j

)(
uj

m

)

≡
k∑
j=0

(−1)p+k−j
(
p+ k

j

)(
jt1
k − 1

){
j(j − 1)

2
t21 + jt2

}

+

p+k∑
j=p

(−1)p+k−j
(
p+ k

j

)(
uj

m

)

≡ −
k∑
j=0

(−1)k−j
(
p+ k

j

)(
jt1
k − 1

){
j(j − 1)

2
t21 + jt2

}

+
k∑
j=0

(−1)k−j
(
p+ k

k − j

)(
jt1
k − 1

){
t1 +

j(j − 1)

2
t21 + jt2

}
(mod p). (4.7)

Again,
(
p+k
j

)
≡
(
k
j

)
(mod p) and hence (4.7) implies that

ap+k(fm) ≡
k∑
j=0

(−1)k−j
(
k

j

)(
jt1
k − 1

)
t1 (mod p). (4.8)

Using Lemma (3.4), we complete the proof of ap+k(fm) ≡ 0 (mod p) when m =
p2 + (k − 1)p and this completes the proof of the lemma.

Lemma 4.2. Suppose that 1 ≤ k < p. Then

ap+k(fp2+kp) ≡ tk+1
1 (mod p) and ap+k+1(fp2+kp) ≡ 0 (mod p).

Proof: Proceeding as Lemma (4.1), we find that

ap+k(fp2+kp) ≡ t1 ×

{
k∑
j=0

(−1)k−j
(
k

j

)(
jt1
k

)}
(mod p)

and ap+k+1(fp2+kp) ≡ t1 ×

{
k+1∑
j=0

(−1)k+1−j
(
k + 1

j

)(
jt1
k

)}
(mod p).

Using result (3.1) and lemma (3.4), we complete the proof of the lemma.
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Lemma 4.3. Suppose that 2p2 − p ≤ m < 2p2. Then a2p(fm) ≡ 0 (mod p). Also,

a2p(f2p2) ≡ t21 (mod p), a2p+1(f2p2) ≡ 0 (mod p), and a2p+2(f2p2) ≡ 0 (mod p).

Proof: Suppose that 2p2 − p ≤ m < 2p2. From (1.1), we have

a2p(fm) =

2p∑
j=0

(−1)2p−j
(

2p

j

)(
uj

m

)
≡ −

(
2p

p

)(
up

m

)
+

(
u2p

m

)
≡ co-efficient of Tm in

{
−
(

2p

p

)
× (1 + T )u

p

+ (1 + T )u
2p

}
≡ 0 (mod p). (4.9)

We obtain (4.9) using the binomial expansion (4.1).
Again,

a2p(f2p2) ≡ −
(

2p

p

)(
up

2p2

)
+

(
u2p

2p2

)
≡ co-efficient of T 2p2 in

{
−
(

2p

p

)
× (1 + T )u

p

+ (1 + T )u
2p

}
≡ −2

(
t1
2

)
+

(
2t1
2

)
≡ t21 (mod p). (4.10)

Also, modulo p

a2p+1(f2p2) ≡
(
u

2p2

)
+

(
2p+ 1

p

){(
up

2p2

)
−
(
up+1

2p2

)}
−
(
u2p

2p2

)
+

(
u2p+1

2p2

)
≡ co-efficient of T 2p2 in (1 + T )u +

(
2p+ 1

p

){
(1 + T )u

p − (1 + T )u
p+1
}

− (1 + T )u
2p

+ (1 + T )u
2p+1

≡
(
t2
2

)
+

(
2p+ 1

p

){(
t1
2

)
−
(
t1 + t2

2

)}
−
(

2t1
2

)
+

(
2t1 + t2

2

)
. (4.11)

But,
(
2p+1
p

)
≡ 2 (mod p). Using this in (4.11), we find that

a2p+1(f2p2) ≡ 0(mod p). (4.12)

Finally, we prove that a2p+2(f2p2) ≡ 0 (mod p).
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Using
(
2p+2
p

)
≡ 2 (mod p) and

(
2p+2
p+1

)
≡ 4 (mod p), we find that

a2p+2(f2p2) ≡ −2

(
u

2p2

)
+

(
u2

2p2

)
− 2

(
up

2p2

)
+ 4

(
up+1

2p2

)
− 2

(
up+2

2p2

)
+

(
u2p

2p2

)
− 2

(
u2p+1

2p2

)
+

(
u2p+2

2p2

)
≡ co-efficient of T 2p2 in − 2(1 + T )u + (1 + T )u

2 − 2(1 + T )u
p

+ 4(1 + T )u
p+1

− 2(1 + T )u
p+2

+ (1 + T )u
2p − 2(1 + T )u

2p+1

+ (1 + T )u
2p+2

≡ −2

(
t2
2

)
+

(
t21 + 2t2

2

)
− 2

(
t1
2

)
+ 4

(
t1 + t2

2

)
− 2

(
t21 + t1 + 2t2

2

)
+

(
2t1
2

)
− 2

(
2t1 + t2

2

)
+

(
t21 + 2t1 + 2t2

2

)
≡ 0(mod p). (4.13)

This completes the proof of the lemma.

5. Proof of Main Result

Now we have all the ingredients for the proof of the main result. We may assume
that µ(G(T )) = 0, because µ(G(T )) = µ(β) by result (2.1), and for any power series
F (T ) ∈ O[[T − 1]], if π|F (T ) then λ(π−1F (T )) = λ(F (T )). Childress in her paper [1]
proved that if λ(G(T )) ≤ p, then λ(β) = pλ(G(T )). Hence it is enough to prove the
Theorem (2.3) for p < λ(G(T )) ≤ 2p.

Case (i): Suppose that λ(G) = p + k where 0 < k < p. Then gi ≡ 0 (mod π) for
i = 0, · · · , p + k − 1 and gp+k is a unit. Clearly, ordp((p

2 + kp)!) = p + k + 1 and if
m < p2 + kp, then ordp(m!) ≤ p+ k. Also, if m < p2 + (k− 1)p, then ordp(m!) < p+ k.
Using result (2.4) and gi ≡ 0 (mod π) for i = 0, · · · , p+ k − 1, we have

bm ≡ 0(mod π) if m < p2 + (k − 1)p (5.1)

and
bm ≡ gp+kap+k(fm)(mod π) if p2 + (k − 1)p ≤ m < p2 + kp. (5.2)

¿From lemma (4.1) and (5.2), we get bm ≡ 0 (mod π) and hence

bm ≡ 0(mod π) if m < p2 + kp. (5.3)

Since ordp((p
2 + kp)!) = p+ k + 1, using Lemma (4.2), we have

bp2+kp ≡
p+k+1∑
r=0

grar(fp2+kp) (mod p)

≡ gp+kap+k(fp2+kp) + gp+k+1ap+k+1(fp2+kp) (mod π)

≡ gp+kt
k+1
1 (mod π), (5.4)

which is a unit in O. This proves that λ(β) = p2 + kp = pλ(G(T )).
Case (ii): Now suppose that λ(G(T )) = 2p. Then gi ≡ 0 (mod π) for i = 0, · · · , 2p−1

and g2p is a unit in O. If m < 2p2− p, then ordp(m!) < 2p and hence from result (2.4),
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we have bm ≡ 0 (mod π). If 2p2 − p ≤ m < 2p2, then ordp(m!) ≤ 2p and hence from
result (2.4) and lemma (4.3), we have

bm ≡
2p∑
r=0

grar(fm) (mod p) ≡ g2pa2p(fm) ≡ 0 (mod π). (5.5)

Thus, if m < 2p2, then bm ≡ 0 (mod π). Again, ordp((2p
2)!) = 2p+ 2 and hence

b2p2 ≡
2p+2∑
r=0

grar(fm) (mod p)

≡ g2pa2p(f2p2) + g2p+1a2p+1(f2p2) + g2p+2a2p+2(f2p2) (mod π). (5.6)

¿From (4.10), (4.12), (4.13), and (5.6), we have b2p2 ≡ g2pt
2
1 (mod π). Therefore, b2p2 is

a unit in O and hence λ(β) = 2p2 = pλ(G(T )). This completes the proof of the main
theorem.
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