Main conjecture for totally real fields

Mahesh Kakde

Goa, August 11, 2010

Fix an odd prime p.

- Fix an odd prime p.
- ▶ Let *F* be a totally real number field.

- Fix an odd prime p.
- ▶ Let F be a totally real number field.
- ▶ Let F_{∞} be a totally real Galois extension of F containing the cyclotomic \mathbb{Z}_p -extension F^{cyc} of F.

- Fix an odd prime p.
- ▶ Let *F* be a totally real number field.
- ▶ Let F_{∞} be a totally real Galois extension of F containing the cyclotomic \mathbb{Z}_p -extension F^{cyc} of F.
- Let Σ be a finite set of finite primes of F containing all which ramify in F_{∞} .

- Fix an odd prime p.
- Let F be a totally real number field.
- ▶ Let F_{∞} be a totally real Galois extension of F containing the cyclotomic \mathbb{Z}_p -extension F^{cyc} of F.
- Let Σ be a finite set of finite primes of F containing all which ramify in F_{∞} .
- Let M be the maximal abelian p-extension of F_{∞} unramified outside primes above Σ .

- Fix an odd prime p.
- Let F be a totally real number field.
- ▶ Let F_{∞} be a totally real Galois extension of F containing the cyclotomic \mathbb{Z}_p -extension F^{cyc} of F.
- Let Σ be a finite set of finite primes of F containing all which ramify in F_{∞} .
- Let M be the maximal abelian p-extension of F_{∞} unramified outside primes above Σ .
- $\begin{array}{ll} \blacktriangleright \ \mathcal{G} := \mathit{Gal}(F_{\infty}/F) & \mathit{H} := \mathit{Gal}(F_{\infty}/F^{\mathit{cyc}}) \\ \Gamma := \mathit{Gal}(F^{\mathit{cyc}}/F) \cong \mathbb{Z}_p \ \mathsf{and} \ X := \mathit{Gal}(M/F_{\infty}). \end{array}$

▶ We have a short exact sequence

$$1 o X o {\it Gal}(M/F) o {\it G} o 1.$$

▶ We have a short exact sequence

$$1 \rightarrow X \rightarrow Gal(M/F) \rightarrow \mathcal{G} \rightarrow 1.$$

• which gives an action of \mathcal{G} on X.

We have a short exact sequence

$$1 \rightarrow X \rightarrow Gal(M/F) \rightarrow \mathcal{G} \rightarrow 1$$
.

- which gives an action of \mathcal{G} on X.
- Extend this action to the action of $\Lambda(\mathcal{G}) := \mathbb{Z}_p[[\mathcal{G}]] := \varprojlim_{U} \mathbb{Z}_p[\mathcal{G}/U].$

We have a short exact sequence

$$1 \rightarrow X \rightarrow Gal(M/F) \rightarrow \mathcal{G} \rightarrow 1$$
.

- which gives an action of \mathcal{G} on X.
- Extend this action to the action of $\Lambda(\mathcal{G}) := \mathbb{Z}_p[[\mathcal{G}]] := \varprojlim_{II} \mathbb{Z}_p[\mathcal{G}/U].$
- We wish to study X as a $\Lambda(\mathcal{G})$ -module.

▶ Let $C^{\cdot}(F_{\infty}/F) = RHom(R\Gamma_{et}(O_{\infty}([\frac{1}{\overline{\Sigma}}]), \mathbb{Q}_p/\mathbb{Z}_p), \mathbb{Q}_p/\mathbb{Z}_p).$

- ▶ Let $C^{\cdot}(F_{\infty}/F) = RHom(R\Gamma_{et}(O_{\infty}([\frac{1}{\Sigma}]), \mathbb{Q}_p/\mathbb{Z}_p), \mathbb{Q}_p/\mathbb{Z}_p).$
- $ightharpoonup H^{-1}(C^{\cdot}(F_{\infty}/F)) \cong X, \ H^{0}(C^{\cdot}(F_{\infty}/F)) \cong \mathbb{Z}_{p}.$

- ▶ Let $C^{\cdot}(F_{\infty}/F) = RHom(R\Gamma_{et}(O_{\infty}([\frac{1}{\Sigma}]), \mathbb{Q}_p/\mathbb{Z}_p), \mathbb{Q}_p/\mathbb{Z}_p).$
- $H^{-1}(C^{\cdot}(F_{\infty}/F)) \cong X, \ H^{0}(C^{\cdot}(F_{\infty}/F)) \cong \mathbb{Z}_{p}.$
- ▶ Let

$$S = \{ f \in \Lambda(\mathcal{G}) | \Lambda(\mathcal{G}) / \Lambda(\mathcal{G}) f \text{ is a f.g. } \Lambda(H) - \text{module} \}$$

- ▶ Let $C(F_{\infty}/F) = RHom(R\Gamma_{et}(O_{\infty}([\frac{1}{\Sigma}]), \mathbb{Q}_p/\mathbb{Z}_p), \mathbb{Q}_p/\mathbb{Z}_p).$
- $ightharpoonup H^{-1}(C^{\cdot}(F_{\infty}/F)) \cong X, \ H^{0}(C^{\cdot}(F_{\infty}/F)) \cong \mathbb{Z}_{p}.$
- Let

$$S = \{ f \in \Lambda(\mathcal{G}) | \Lambda(\mathcal{G}) / \Lambda(\mathcal{G}) f \text{ is a f.g. } \Lambda(H) - \text{module} \}$$

▶ the canonical Ore set of Coates-Fukaya-Kato-Sujatha-Venjakob. Hence $\Lambda(\mathcal{G}) \hookrightarrow \Lambda(\mathcal{G})_{S}$.

- ▶ Let $C(F_{\infty}/F) = RHom(R\Gamma_{et}(O_{\infty}([\frac{1}{\Sigma}]), \mathbb{Q}_p/\mathbb{Z}_p), \mathbb{Q}_p/\mathbb{Z}_p).$
- $ightharpoonup H^{-1}(C^{\cdot}(F_{\infty}/F)) \cong X, H^{0}(C^{\cdot}(F_{\infty}/F)) \cong \mathbb{Z}_{p}.$
- ▶ Let

$$S = \{ f \in \Lambda(\mathcal{G}) | \Lambda(\mathcal{G}) / \Lambda(\mathcal{G}) f \text{ is a f.g. } \Lambda(H) - \text{module} \}$$

- ► the canonical Ore set of Coates-Fukaya-Kato-Sujatha-Venjakob. HenceΛ(G) → Λ(G)_S.
- ▶ We assume that there is an open pro-p subgroup J of $\mathcal G$ such that the cyclotomic μ invariant of F_∞^J vanishes. This is known to be true if F_∞^J is abelian over $\mathbb Q$ (Ferrero-Washington).

- ▶ Let $C^{\cdot}(F_{\infty}/F) = RHom(R\Gamma_{et}(O_{\infty}([\frac{1}{\Sigma}]), \mathbb{Q}_p/\mathbb{Z}_p), \mathbb{Q}_p/\mathbb{Z}_p).$
- $ightharpoonup H^{-1}(C^{\cdot}(F_{\infty}/F)) \cong X, H^{0}(C^{\cdot}(F_{\infty}/F)) \cong \mathbb{Z}_{p}.$
- ► Let

$$S = \{ f \in \Lambda(\mathcal{G}) | \Lambda(\mathcal{G}) / \Lambda(\mathcal{G}) f \text{ is a f.g. } \Lambda(H) - \text{module} \}$$

- ► the canonical Ore set of Coates-Fukaya-Kato-Sujatha-Venjakob. HenceΛ(G) ← Λ(G)_S.
- ▶ We assume that there is an open pro-p subgroup J of $\mathcal G$ such that the cyclotomic μ invariant of F_∞^J vanishes. This is known to be true if F_∞^J is abelian over $\mathbb Q$ (Ferrero-Washington).
- ▶ The assumtion implies that the cohomologies of $C^{\cdot}(F_{\infty}/F)$ are S-torsion.

► For a finite group P, let

$$SK_1(\mathbb{Z}_p[P]) = ker(K_1(\mathbb{Z}_p[P]) \to K_1(\mathbb{Q}_p[P])).$$

► For a finite group P, let

$$SK_1(\mathbb{Z}_p[P]) = ker(K_1(\mathbb{Z}_p[P]) \to K_1(\mathbb{Q}_p[P])).$$

▶ Let $SK_1(\Lambda(\mathcal{G})) = \varprojlim_{II} SK_1(\mathbb{Z}_p[\mathcal{G}/U])$ and

▶ For a finite group *P*, let

$$SK_1(\mathbb{Z}_p[P]) = ker(K_1(\mathbb{Z}_p[P]) \to K_1(\mathbb{Q}_p[P])).$$

- ▶ Let $SK_1(\Lambda(\mathcal{G})) = \lim_{\stackrel{\longleftarrow}{U}} SK_1(\mathbb{Z}_p[\mathcal{G}/U])$ and
- ▶ $SK_1(\Lambda(\mathcal{G})_S) = Image(SK_1(\Lambda(\mathcal{G})) \rightarrow K_1(\Lambda(\mathcal{G})_S)).$

► For a finite group *P*, let

$$SK_1(\mathbb{Z}_p[P]) = ker(K_1(\mathbb{Z}_p[P]) \to K_1(\mathbb{Q}_p[P])).$$

- ▶ Let $SK_1(\Lambda(\mathcal{G})) = \varprojlim_{U} SK_1(\mathbb{Z}_p[\mathcal{G}/U])$ and
- ▶ $SK_1(\Lambda(\mathcal{G})_S) = Image(SK_1(\Lambda(\mathcal{G})) \rightarrow K_1(\Lambda(\mathcal{G})_S)).$
- ▶ Let

$$K'_1(\Lambda(\mathcal{G})) = K_1(\Lambda(\mathcal{G}))/SK_1(\Lambda(\mathcal{G}))$$

$$K'_1(\Lambda(\mathcal{G})_S) = K_1(\Lambda(\mathcal{G})_S)/SK_1(\Lambda(\mathcal{G})_S).$$

► There is an exact sequence

$${K_1'}(\Lambda(\mathcal{G})) \to {K_1'}(\Lambda(\mathcal{G})_S) \xrightarrow{\partial} {K_0}(\Lambda(\mathcal{G}), \Lambda(\mathcal{G})_S) \to 0.$$

▶ There is an exact sequence

$$\mathcal{K}_1'(\Lambda(\mathcal{G})) \to \mathcal{K}_1'(\Lambda(\mathcal{G})_S) \xrightarrow{\partial} \mathcal{K}_0(\Lambda(\mathcal{G}), \Lambda(\mathcal{G})_S) \to 0.$$

▶ here $K_0(\Lambda(\mathcal{G}), \Lambda(\mathcal{G})_S)$ is the Grothendieck group of the category of bounded complexes of finitely generated projective $\Lambda(\mathcal{G})$ with S-torsion cohomologies.

There is an exact sequence

$$K_1'(\Lambda(\mathcal{G})) \to K_1'(\Lambda(\mathcal{G})_S) \xrightarrow{\partial} K_0(\Lambda(\mathcal{G}), \Lambda(\mathcal{G})_S) \to 0.$$

- ▶ here $K_0(\Lambda(\mathcal{G}), \Lambda(\mathcal{G})_S)$ is the Grothendieck group of the category of bounded complexes of finitely generated projective $\Lambda(\mathcal{G})$ with S-torsion cohomologies.
- ▶ A characteristic element of $C^{\cdot}(F_{\infty}/F)$ is any element $f \in K'_1(\Lambda(\mathcal{G})_S)$ such that $\partial(f) = [C^{\cdot}(F_{\infty}/F)]$.

Theorem

(Main Conjecture) There is a unique element

$$\zeta = \zeta(F_{\infty}/F) \in K_1'(\Lambda(\mathcal{G})_S)$$
 such that

- (i) $\partial(\zeta) = -[C(F_{\infty}/F)]$, and
- (ii) For any Artin representation ρ of \mathcal{G} and any positive integer r divisible by p-1, we have

$$\zeta(\rho \kappa_F^r) = L_{\Sigma}(\rho, 1 - r).$$

Here κ_F : $Gal(F(\mu_{p^{\infty}})/F) \to \mathbb{Z}_p^{\times}$ is the p-adic cyclotomic character.

► The conjecture in this form was formulated by Coates-Fukaya-Kato-Sujatha-Venjakob. A variation of this conjectures were formulated by Burns-Flach and Huber-Kings.

- ► The conjecture in this form was formulated by Coates-Fukaya-Kato-Sujatha-Venjakob. A variation of this conjectures were formulated by Burns-Flach and Huber-Kings.
- ightharpoonup Ritter-Weiss considered the case when $\mathcal G$ is one dimensional.

- ► The conjecture in this form was formulated by Coates-Fukaya-Kato-Sujatha-Venjakob. A variation of this conjectures were formulated by Burns-Flach and Huber-Kings.
- ightharpoonup Ritter-Weiss considered the case when ${\cal G}$ is one dimensional.
- ▶ When *G* is abelian and *H* is finite, the theorem is an easy consequence of the classical Iwasawa main conjecture as proven by Wiles.

- ► The conjecture in this form was formulated by Coates-Fukaya-Kato-Sujatha-Venjakob. A variation of this conjectures were formulated by Burns-Flach and Huber-Kings.
- ightharpoonup Ritter-Weiss considered the case when ${\cal G}$ is one dimensional.
- When G is abelian and H is finite, the theorem is an easy consequence of the classical lwasawa main conjecture as proven by Wiles.
- ► The above theorem is also a consequence of the series of paper by Ritter-Weiss and a recent paper of Burns.

Reduction to one dimensional case

Theorem

The main conjecture is true for F_{∞}/F if and only if it is true for F_{∞}^{U}/F for every open subgroup U of H which is normal in \mathcal{G} .

▶ A finite group P is called I-hyperelementary if there is an I-group π and a finite cyclic group C_n of order n such that I does not divide n and $P \cong C_n \rtimes \pi$. A finite group P is hyperelementary if it is I-hyperelementary for some I.

- ▶ A finite group P is called I-hyperelementary if there is an I-group π and a finite cyclic group C_n of order n such that I does not divide n and $P \cong C_n \rtimes \pi$. A finite group P is hyperelementary if it is I-hyperelementary for some I.
- ▶ $\mathcal{G} \cong H \rtimes \Gamma$. Let Γ^{p^e} be a fixed central subgroup of \mathcal{G} and let $G := \mathcal{G}/\Gamma^{p^e}$. For any subgroup P of G, let U_P be the inverse image of P in \mathcal{G} .

- ▶ A finite group P is called I-hyperelementary if there is an I-group π and a finite cyclic group C_n of order n such that I does not divide n and $P \cong C_n \rtimes \pi$. A finite group P is hyperelementary if it is I-hyperelementary for some I.
- ▶ $\mathcal{G} \cong H \rtimes \Gamma$. Let Γ^{p^e} be a fixed central subgroup of \mathcal{G} and let $G := \mathcal{G}/\Gamma^{p^e}$. For any subgroup P of G, let U_P be the inverse image of P in \mathcal{G} .

- ▶ A finite group P is called I-hyperelementary if there is an I-group π and a finite cyclic group C_n of order n such that I does not divide n and $P \cong C_n \rtimes \pi$. A finite group P is hyperelementary if it is I-hyperelementary for some I.
- ▶ $\mathcal{G} \cong H \rtimes \Gamma$. Let Γ^{p^e} be a fixed central subgroup of \mathcal{G} and let $G := \mathcal{G}/\Gamma^{p^e}$. For any subgroup P of G, let U_P be the inverse image of P in \mathcal{G} .

► Theorem

The main conjecture for one dimensional p-adic Lie extensions F_{∞}/F is true if and only if for every hyperelementary subgroup P of G, the main conjecture is true for $F_{\infty}/F_{\infty}^{U_P}$.

▶ Now we may assume that $G = \mathcal{G}/\Gamma^{p^e}$ is hyperelementary.

- ▶ Now we may assume that $G = \mathcal{G}/\Gamma^{p^e}$ is hyperelementary.
- ▶ The case when *G* is *I*-hyperelementary for $I \neq p$ is easier.

- Now we may assume that $G = \mathcal{G}/\Gamma^{p^e}$ is hyperelementary.
- ▶ The case when G is I-hyperelementary for $I \neq p$ is easier.
- ► The case when *G* is *p*-hyperelementary is reduced to the case when *G* is a *p* group i.e. when *G* is a one dimensional pro-*p p*-adic Lie group.

Now on we assume that F_{∞}/F is a p-adic Lie extension of dimension 1 and $\mathcal{G}=Gal(F_{\infty}/F)$ is a pro-p group. Then $\mathcal{G}=H\rtimes\Gamma$.

- Now on we assume that F_{∞}/F is a p-adic Lie extension of dimension 1 and $\mathcal{G}=Gal(F_{\infty}/F)$ is a pro-p group. Then $\mathcal{G}=H\rtimes\Gamma$.
- Let Γ^{p^e} be a fixed central open subgroup of $\mathcal G$ and let $G=\mathcal G/\Gamma^{p^e}$. For a subgroup P of G, let U_P denote the inverse image of P in $\mathcal G$.

 \blacktriangleright Let P be a cyclic subgroup of G.

- ▶ Let *P* be a cyclic subgroup of *G*.
- Let N_GP be the normaliser of P in G and let $W_GP = N_GP/G$.

- ▶ Let *P* be a cyclic subgroup of *G*.
- ▶ Let $N_G P$ be the normaliser of P in G and let $W_G P = N_G P/G$.
- ▶ The group W_GP acts on the Iwasawa algebra $\Lambda(U_P)_S$ by conjugation. We use this action to define a map from $\Lambda(U_P)_S$ to itself by

$$x \mapsto \sum_{g \in W_G P} gxg^{-1}$$

- ▶ Let *P* be a cyclic subgroup of *G*.
- Let $N_G P$ be the normaliser of P in G and let $W_G P = N_G P/G$.
- ▶ The group W_GP acts on the Iwasawa algebra $\Lambda(U_P)_S$ by conjugation. We use this action to define a map from $\Lambda(U_P)_S$ to itself by

$$x \mapsto \sum_{g \in W_G P} gxg^{-1}$$

▶ and let $T_{P,S}$ be the image of $\Lambda(U_P)_S$ under this map.

Let ζ_P be the *p*-adic zeta function for the abelian extension $F_{\infty}/F_{\infty}^{U_P}$.

- Let ζ_P be the *p*-adic zeta function for the abelian extension $F_{\infty}/F_{\infty}^{U_P}$.
- ▶ For $P \leq P'$, two cyclic subgroups of G, we let $ver_P^{P'}$ denote the map

$$\Lambda(U_{P'})_S \to \Lambda(U_P)_S$$
,

induced by the transfer homomorphism $U_{P'} \rightarrow U_P$.

- Let ζ_P be the *p*-adic zeta function for the abelian extension $F_{\infty}/F_{\infty}^{U_P}$.
- ▶ For $P \leq P'$, two cyclic subgroups of G, we let $ver_P^{P'}$ denote the map

$$\Lambda(U_{P'})_S \to \Lambda(U_P)_S$$
,

induced by the transfer homomorphism $U_{P'} \to U_P$.

- Let ζ_P be the *p*-adic zeta function for the abelian extension $F_{\infty}/F_{\infty}^{U_P}$.
- ▶ For $P \leq P'$, two cyclic subgroups of G, we let $ver_P^{P'}$ denote the map

$$\Lambda(U_{P'})_S \to \Lambda(U_P)_S$$
,

induced by the transfer homomorphism $U_{P'} \rightarrow U_P$.

▶ Theorem

The main conjecture for F_{∞}/F is true if and only if the following congruence holds: for all cyclic subgroups P of G

$$\zeta_P \equiv \sum_{P'} \operatorname{ver}_P^{P'}(\zeta_{P'}) (\operatorname{mod} T_{P,S}),$$

where the sum ranges over all cyclic subgroup P' of G such that $P'^p = P$ and $P' \neq P$.