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Abstract: In the context of cyclotomic fields, it is still unknown whether there exist

Euler systems other than the ones derived from cyclotomic units. Nevertheless, we first

give an exposition on how norm-compatible units are generated by any Euler system,

following work of Coates. Then we prove that the units obtained from Euler systems and

the cyclotomic units generate the same Zp-module for any odd prime p. The techniques

adopted for the Iwasawa theoreitc proof in latter part of this article originated in Rubin’s

work on main conjectures of Iwasawa theory.

1 Introduction

Euler systems were introduced by Thaine and Kolyvagin. Later, Rubin used Euler

system of cyclotomic units and elliptic units to prove the main conjecture of Iwasawa

theory in various set-ups. In [Co], Coates gave a definition of Euler systems in the

context of elliptic curves. His definition is somewhat stronger and different from that

of Rubin and Kolyvagin, but it fits more closely with earlier work of Coates and Wiles

([CW 1], [CW 2]). In the context of cyclotomic fields, the definition analogous to [Co]

is as follows. Let S be any finite set of rational primes, always containing 2. Let

WS = {ζ ∈ Q̄ : ζn = 1 with (n, S) = 1}.

Definition : An Euler system is a map φ : WS −→ Q̄× which satisfies the following

axioms:

• (E 1) φ(ησ) = φ(η)σ ∀ σ ∈ Gal(Q̄/Q), and φ(η−1) = φ(η).

• (E 2) If p is any rational prime not in S, we have∏
ζ∈µp

φ(ζη) = φ(ηp) ∀η ∈WS .

• (E 3) Let p be any rational prime not in S. Then, for all η ∈ WS of order prime

to p, and all ζ ∈ µp, we have

φ(ζη) ≡ φ(η) mod p ∀p|p. (1)
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[Here, p is a prime ideal over p in any field that contains φ(ζη)].

The basic example of an Euler system is essentially the classical system of cyclotomic

units. We briefly describe them. Let Ω denote the non-zero integers a1, . . . ar and integers

n1, . . . , nr such that
∑r

j=1 nj = 0. Let λΩ(T ) be given by

λΩ(T ) =
r∏
j=1

(T−aj − T aj )nj .

Let S be the set consisting of 2 and all primes q such that q divides at least one of the

ai. Let φΩ : WS −→ Q̄× be defined as

(i) φΩ(η) = λΩ(η) for η ∈WS and η 6= 1.

(ii) φΩ(1) = lim
T→1

λΩ(T ) =
r∏
j=1

a
nj

j .

It is easy to check that φΩ forms an Euler system. Given an Euler system φ : WS −→ Q̄×,

there are two ways of constructing new ones:

• If n is any non-zero integer, φ ◦ n is again an Euler system provided we enlarge S

to include primes dividing n.

• If ξ is a primitive h-th root of 1, define φξ(η) =
∏
τ
φ(ηξτ ) where τ runs over the

elements of the Galois group Gal(Q(ξ)/Q). Here, we enlarge S by including all the

primes that divide h.

It is still unknown whether there exist Euler systems attached to cyclotomic fields other

than those mentioned above.

2 Euler systems generate global units

In this section, we will explain how Euler systems attached to cyclotomic fields generate

norm-compatible global units in the cyclotomic tower. The next three propositions are

consequences of the axioms (E 1), (E 2) and (E 3), and are cyclotomic analogues of

results in [Co]. For each m ≥ 1, let µm denote the group of m-th roots of unity. If

η ∈ µm, with (m,S) = 1, then (E 1) shows that φ(η) ∈ Q(µm)+ ⊂ Q(µm), where L+

denotes the maximal real subfield of L. Let Qm denote the cyclotomic field Q(µm) and

Hm denote the maximal real subfield of Qm, i.e., Hm = Q(µm)+.

2



Proposition 2.1 Let η be an element of µm with (m,S) = 1. Let p be any prime with

(p,m) = 1, and p 6∈ S, Then, we have

NHmp/Hm
φ(ζη) = φ(η)Frobp−1 ∀ ζ ∈ µp, η 6= 1. (2)

Here, Frobp denotes the Frobenius element of p in the Galois group of Hm over Q, which

is unramified at p.

Proof: By axiom E1 and E2,

NHmp/Hmφ(ζη) =
Q

σ∈Gal(Hmp/Hm)

φ(ζη)σ =
Q

σ∈Gal(Qmp/Qm)

φ(ζσησ)

=

Q
ξ∈µp

φ(ξη)

φ(1.η)
=

φ(ηp)
φ(η)

= φ(η)Frobp−1. �

Proposition 2.2 Let η be any element of µm with (m,S) = 1. Let p be any prime with

(p,m) = (p, S) = 1. For each n ≥ 0, let ζn be a primitive pn+1-root of 1 such that

ζpn+1 = ζn. Then the sequence φ(ζnηFrob−n
p )(n = 0, 1, . . .), is norm compatible in the

tower Hmp∞ over Hmp.

Proof: By axioms E1 and E2,

NH
mpn+1/Hmpnφ(ζnη

Frob−n
p ) =

Q
σ∈Gal(H

mpn+1/Hmpn )

φ(ζnη
Frob−n

p )σ =
Q

σ∈Gal(Q
mpn+1/Qmpn )

φ(ζσ
nη

Frob−n
p )

=
Q

ξ∈µp

φ(ξζnη
Frob−n

p ) = φ(ζp
nη

pFrob−n
p ) = φ(ζn−1η

Frob
−(n−1)
p ). �

Proposition 2.3 For all η ∈WS with η 6= 1, φ(η) is a unit.

In order to prove the above proposition, we need the following lemma:

Lemma 2.4 Let p be any prime and K/Q be a finite extension. Let α ∈ K be a universal

norm in the tower K(µp∞). Then every prime ideal in the factorization of α divides p.

Proof: Let q be a prime not dividing p that occurs in the factorization of α. Now, the

Galois group Gal(K(µp∞)/K) is a subgroup of Z×p . After finitely extending K, we can

assume that the Galois group is Zp. Since q is unramified in the tower, it is enough to

show that its decomposition group in non-trivial. Then, q will be an inert prime, and

infinite power of q will divide the universal norm α, which is absurd. If the decompo-

sition group is trivial, it will imply that the residue fields in the tower K(µp∞)/F are

finite. But, if ζ and ξ are p-power roots of unity, then ζ 6≡ ξ modulo q unless q lies above p.
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Proof of proposition 2.3: Let η be a primitive root of order m = pn+1b, where (p, b) = 1.

Let us denote the number field Q(η)+ by K. We know that φ(η) ∈ K. Let q be a prime

ideal in K that divides φ(η). By proposition 2.2, φ(η) is a universal norm in the tower

Q(µp∞η)+ over K = Q(η)+. Clearly, φ(η)2 ∈ K is a universal norm in the tower K(µp∞)

over K. Hence, q must divide p by the above lemma. If b is not 1 we are through, as q

must also divide any prime factor of b.

Now consider the case b = 1. Then η = ζn, and by proposition 2.2, NHpn+1/Hp
φ(ζn) =

φ(ζ0). Now,

NHp/Qφ(ζ0) =
(
NQ(µp)/Qφ(ζ0)

) 1
2

=
( ∏
σ∈Gal(Q(µp)/Q)

φ(ζ0)σ
) 1

2

=
( ∏
σ∈Gal(Q(µp)/Q)

φ(ζσ0 )
) 1

2

=

( ∏
ξ∈µp

φ(ξ)

φ(1)

) 1
2

=
(φ(1)
φ(1)

) 1
2 = ±1.

Noting that K = φ(ζn)+ is totally ramified over Q at p, we have only one prime q of K

above p. But now (φ(η)) = qr for some integer r, and r has to be zero as the norm of

φ(η) is ±1. Thus, φ(η) is a global unit in the ring of integers of K. �

Thus, we can conclude that Euler systems attached to cyclotomic fields generate norm-

compatible global units.

3 Statement of main result

Let p be an odd prime, and ζn be a fixed pn+1-th root of unity such that ζpn+1 = ζn∀n ≥ 0.

Let Fn denote the number field Q(ζn)+. Let

H(p) = the set of Euler systems φ : WS −→ Q̄× such that p 6∈ S.

By proposition 2.3, above, φ(ζn) is a global unit in Fn for any φ ∈ H(p). By proposition

2.2,

NFn+1/Fn
φ(ζn+1) = φ(ζn). (3)
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Let us define

En = {φ(ζn) | φ ∈ H(p)}.

Let En and Cn denote respectively the global units and the cyclotomic units in Fn. Let

pn be the unique maximal ideal of Fn above p. We denote the completion of Fn at pn

by Φn. Let Un be the principal local units of Φn, i.e., the local units in Φn congruent to

1 mod pn. Let En,1, Cn,1 and En,1 denote respectively the subgroup of principal units

in En, Cn and En. These subgroups can be canonically embedded in Un. Let Ẽn,1, C̃n,1
and Ẽn,1 be respectively the closure of En,1, Cn,1 and En,1 in Un. Let Ēn = Zp ⊗ En,

C̄n = Zp ⊗ Cn and Ēn = Zp ⊗ En. By Leopoldt’s conjecture, which is proved to be true

for the abelian extensions Fn of Q, we have Ēn = Ẽn,1, C̄n = C̃n,1 and Ēn = Ẽn,1. Hence

we have a natural inclusion

C̄n ⊂ Ēn ⊂ Ēn.

The main result of this paper is the theorem below:

Theorem 3.1 The Zp-module generated by the global units derived from Euler systems

attached to p-power cyclotomic fields is the same as the Zp-module generated by the

cyclotomic units. In other words, Ēn = C̄n.

Note that the index of C̄n in Ēn equals hp,n, where hp,n denotes the p-part of the class

number of Fn = Q(ζn)+. Vandiver has conjectured that hp,0 = 1 (which is equivalent

to saying that hp,n = 1 for all n = 0, 1, 2, . . .). If one can show that [Ē0 : Ē0] = 1,

then it will imply Vandiver’s conjecture by virtue of theorem 3.1. Of course, even to

attempt this approach to Vandiver’s conjecture, one would certainly require an Euler

system which is not derived from cyclotomic units.

Another interesting point to note here is the connection of theorem 3.1 to Greenberg’s

conjecture. Greenberg’s conjecture is equivalent to the statement that the only universal

norms in Ē0 is the group C̄0. Since the values of Euler systems are universal norms, the-

orem 3.1 gives evidence for Greenberg’s conjecture. One can raise the question whether

the only universal norms in each Ēn are those coming from Euler systems.

We will prove the above theorem by establishing a relation involving Iwasawa modules,

and then by descent.
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4 Iwasawa theoretic set-up

Let us consider the infinite extension

F∞ = ∪n≥0Fn,

where Fn = Q(ζn)+ and ζn is a primitive pn+1-th root of unity such that ζpn+1 = ζn. Let

us define the Galois groups

Gn = G(Fn/Q), Γn = G(Fn/F0).

Let G∞ be the Galois group of F∞ over Q and Γ be the Galois group Gal(F∞/F0).

Clearly,

G∞ = G(F∞/Q) = ∆× Γ, where ∆ ' G(F1/Q).

We have the following field diagram:

F∞

Fn = Q(ζn)+

F0 = Q(ζ0)+

Q

G∞

Gn

Γ

Γn

Let Rn be the group ring of Gn with coefficients in Zp. These group rings form an inverse

system under the canonical maps from Rm to Rn. We define

R∞ = lim←−
n

Zp[Gn].

A R∞-module N is called a torsion R∞-module if it is annihilated by a non-zero-divisor

in R∞. If N is a finitely generated torsion R∞-module, then there is an injective R∞-

module homomorphism
r⊕
i=1

R∞/giR∞ ↪→ N (4)
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with finite cokernel. The elements gi are not uniquely determined, but the ideal
∏
i
giR∞

is. We call the ideal
∏
i
giR∞ the characteristic ideal of N and denote it by char(N). The

characteristic ideal is multiplicative in exact sequence: if 0 −→ N ′ −→ N −→ N ′′ −→ 0

is an exact sequence of torsion R∞-modules then

char(N) = char(N ′)char(N ′′).

From now on, M will always denote a fixed power of p. We denote the group ring of Gn
with coefficients in Zp modulo M by Rn,M , i.e.,

Rn,M = (Z/MZ) [Gn] = Rn/MRn.

We denote the p-part of the ideal class group of Fn by An. These groups form an inverse

system under the norm maps and we denote the inverse limit by A∞.

Now, the Zp-modules Un, C̄n, Ēn and Ēn defined in the previous section are equipped

with an Rn-module structure. They form an inverse system of Rn-modules with respect

to the norm maps. Thus, we define the inverse limits

U∞ = lim←−
n

Un, E∞ = lim←−
n

Ēn, E∞ = lim←−
n

Ēn, C∞ = lim←−
n

C̄n.

These inverse limits have the natural structure of a R∞-module. We will first determine

a relation between the Iwasawa modules E∞ and C∞. Then, we will descend to the n-th

layer.

Proposition 4.1 The characteristic ideal of A∞ contains the characteristic ideal of

E∞/E∞.

Proof of theorem 3.1 assuming proposition 4.1 : Our main result follows easily from

proposition 4.1. We have the following exact sequence of R∞-modules

0 −→ E∞/C∞ −→E∞/C∞ −→ E∞/E∞ −→ 0.

⇒ char(E∞/C∞) =char(E∞/E∞)char(E∞/C∞). (5)

By “main conjecture” of Iwasawa theory for cyclotomic fields, we have

char(A∞) = char(E∞/C∞) (6)

Then proposition 4.1 combined with (5) and (6) imply that char(E∞/C∞) = R∞. That

tells us that E∞/C∞ is a finite R∞ submodule of U∞/C∞. However, it is well-known
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that U∞/C∞ ' R∞/(g). For instance, the results in [Sa] gives an explicit proof of

this fact. Hence, U∞/C∞ has no non-trivial finite R∞-submodule. Thus, E∞/C∞ = 0,

and (C∞)Γn = (E∞)Γn . However, by the R∞-module structure of C∞, we know that

(C∞)Γn = C̄n. Moreover, (E∞)Γn � Ēn. Thus, the canonical injection C̄n −→ Ēn is also

surjective, and we have our main result.

Our approach to proposition 4.1 will be as follows. We will use the units generated by

Euler systems to construct new elements (called Koyvagin class), which factorize non-

trivially. We will then determine the factorization of these new elements (proposition

6.2). This gives us a systematic way of obtaining relations in the ideal class group.

These relations will be recast in Iwasawa theoretic set-up, and we will obtain a suitable

ideal which annihilates the Iwasawa module of class groups. This approach originated

in Rubin’s work. In the remaining sections, we will closely follow Rubin’s proof of the

main conjectures of Iwasawa theory.

5 Kolyvagin class

From now on, we fix n and refer to Fn simply as F , dropping the subscript. In this

section, we will construct elements in F× using the global units derived from any Euler

system. The factorization of these elements can be easily determined, which will be

shown in the following section. Let M be a fixed power of p. Let SM be the set of

square-free integers s such that each prime factor q of s splits in F/Q and q ≡ 1 mod M .

For the rest of this paper, q will always denote a rational prime in SM , and q will be a

primes of F above q. Let ηq be a fixed primitive q-th root of 1. We write F (q) for the

field F (ηq) and G(q) for the Galois group G(F (ηq)/F ). Clearly, q is totally ramified in

F (q)/F and the ramification index is (q − 1). Suppose σq in G(q) sends ηq to ηtq, where

t is a primitive root mod q. Then G(q) is cyclic and generated by σq.

As in [Ru 4], let us now define the following operators:

Dq =
q−2∑
i=1

iσiq, Ds =
∏
q|s

Dq, and Nq =
q−2∑
i=0

σiq.

It is easily seen that

(σq − 1)Dq = (q − 1−Nq). (7)
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From (2) of pp. 3, it follows that

NqDrφ(ζnηrq) = DrNF (rq)/F (r)φ(ζnηrq)

= (Frobq − 1)Drφ(ζnηr).
(8)

Proposition 5.1 Dsφ(ζnηs) is an element of
(
(F (s)×)/(F (s)×)M

)G(s). In other words,

[(σ − 1)Dsφ(ζnηs)]
1
M is a well defined element of F (s)× for all σ in G(s).

Proof : We use induction on the number of primes dividing s. Suppose q|s and s = qr.

Then

(σq − 1)Dsφ(ζnηs) = (σq − 1)DqDrφ(ζnηs)

= (q − 1)Drφ(ζnηs)/(Frobq − 1)Drφ(ζnηr) (by (7) and (8)).

Since q is in SM , M |(q− 1). As Frobq ∈ G(r), the induction hypothesis implies that the

denominator in the last expression above is in (F (r)×)M . Therefore,

(σq − 1)Dsφ(ζnηs) ∈ (F (s)×)M .

Since the σq generate G(s), this completes the proof of the proposition. �

As σ runs over the elements of G(s), σ 7→ [(σ − 1)Dsφ(ζnηs)]
1
M gives an element of

H1
(
G(s), F (s)×

)
. By Hilbert 90, this cohomology group is trivial. Therefore, there is

an element βs,φ in F (s)× such that

[(σ − 1)Dsφ(ζnηs)]
1
M = (σ − 1)βs,φ. (9)

Clearly, βs,φ is unique up to multiplication by an element of F×. We can now make the

following definition.

Definition : For s ∈ SM , Kolyvagin class is defined as

κφ,M (s) =
Dsφ(ζnηs)

βMs,φ
∈ F×/(F×)M , (10)

where φ is an Euler system in H(p) and βs,φ is given by (9).
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6 Factorization of Kolyvagin class

In the previous section we constructed certain elements, called Kolyvagin classes, in

the F× modulo Mth powers, where F = Q(ζn)+. Here we will describe how one can

determine the factorization of those elements. Such a factorization should be seen as

a relation in the ideal class group of F . This process will lead to construction of an

annihilator of the class group of F in the group ring Z
MZ [Gal(F/Q].

Let OF be the ring of integers of F and

IF = I =
⊕

Zq

be the group of fractional ideals of F written additively. Let

IF,q = Iq =
⊕
q|q

Zq.

For any x ∈ F×, let (x) ∈ I be the principal ideal generated by x, and (x)q, [x]M , and

[x]q,M the projections of (x) to Iq, I/MI, and Iq/MIq respectively. When there is no

ambiguity, we drop the subscript M and simply write [x] or [x]q. Note that [x] and [x]q
are well defined for x ∈ F×/(F×)M . The next two propositions are cyclotomic analogues

of lemma 13 and theorem 14 in [Co]:

Proposition 6.1 There is a Galois equivariant isomorphism

λq :
(
OF /qOF

)×
/
((

OF /qOF
)×)M −→ Iq/MIq.

Proof : Let q̃ be the unique prime of F (q) above the prime q of F and π(q̃) be a local

parameter at q̃. The residue fields of q, q and q̃ will be denoted by k(q), k(q) and k(q̃)

respectively. As q splits in F and q is totally ramified in F (q)/F , the residue fields are

all isomorphic. We have an isomorphism

G(q) −→ k(q̃)×, σ 7→ π(q̃)1−σ mod q̃.

Note that since G(q) is the inertia group in F (q)/F , the above isomorphism does not

depend on the choice of the parameter π(q̃). If σq maps to γ(q̃) under the above isomor-

phism, then clearly γ(q̃) is a generator of k(q̃)×. By our identification above, γ(q̃) can

be regards as a generator of k(q)×. For any w ∈
(
OF /qOF

)×, we have

w ≡ γ(q̃)a(q) mod q for some integer a(q) mod (q − 1).
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Let us define

λq(w) =
∑
q|q

(a(q) mod M) q.

Galois equivariance and surjectivity follow easily. Since both sides have the same cardi-

nality, we have a Galois equivariant isomorphism. �

Note : Since q splits in F , we have a Galois equivariant map

λ̄q :
(
OF /qOF

)×
/
((

OF /qOF
)×)M −→ Z/MZ [G]

given by

λ̄q(w)q = λq(w), (11)

where we fix a q above q.

Proposition 6.2 For qs ∈ SM , we have

(i)
[
κφ,M (s)

]
q

= 0.

(ii)
[
κφ,M (sq)

]
q

= λq(κφ,M (s)).

Proof : Recall that

κφ,M (s) =
Dsφ(ζnηs)

βMs,φ
∈ F×/(F×)M .

Since φ(ζnηs) is a unit in F (s), so is Dsφ(ζnηs). Hence, the ideal generated by κφ,M (s)

in F (s) is determined by βs,φ. Note that q does not divide s, because qs is a square-free

integer.

(i) q is unramified in F (s), and βMs,φ is an M -th power in F (s).

(ii) Let Q̃ be a prime of F (sq) above the prime q of F . The ramification index of Q̃ in

F (sq)/F is (q − 1). By definition of κφ,M (sq),

vq(κφ,M (sq)) = − M

q − 1
vQ̃(βsq,φ). (12)

Since F (sq)/F (q) is unramified at Q̃, the local parameter π(q̃) at the prime ideal q̃ of

F (q) is also a local parameter at Q̃. We have the following diagram of fields and prime

ideals:
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q, Q

q, F

F (q) = F (ηq), q̃

F (sq) = F (ηsq), Q̃

Q, F (ηs) = F (s)

G(q)

t.r.u.r.

u.r.t.r.

�
�

�
��

Z
Z

Z
ZZ

Z
Z

Z
ZZ

�
�

�
��

Let vQ̃(βsq,φ) = b. Then,

βsq,φ = π(q̃)bu, where u ∈ F (sq) is prime to Q̃.

⇒ β
1−σq

sq,φ = π(q̃)(1−σq)bu1−σq

≡ γ(q̃)b mod Q̃ (as σq acts trivially on u modulo Q̃).

From (9),

β
σq−1
sq,φ =

[
(σq − 1)Dsqφ(ζnηsq)

] 1
M

=
[
Dsφ(ζnηsq)(q−1)/Dsφ(ζnηs)Frobq−1

] 1
M [by (7) and (8)]

=
[
Dsφ(ζnηsq)(q−1)/(βMs,φ)

Frobq−1
] 1

M [by (9)]

≡
[
Dsφ(ζnηs)(q−1)/(βMs,φ)

Frobq−1
] 1

M mod Q̃ [by (1)]

≡
[
Dsφ(ζnηs)/βMs,φ

] q−1
M mod Q̃ [since Frobq(x) ≡ xq mod Q̃]

⇒ γ(q̃)−b ≡ κφ,M (s)
q−1
M mod Q̃ [by definition of κφ,M (s)]. (13)

If λq(κφ,M (s)) =
∑

q|q(a(q) mod M)q,

κφ,M (s) ≡ γ(q̃)a(q) mod q [by definition of λq]

⇒ γ(q̃)−b ≡ γ(q̃)a(q)
q−1
M mod q [by (13)]
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Since γ(q̃) is a generator of k(q)×, we have

q − 1
M

a(q) ≡ −b mod (q − 1).

⇒ vq(κφ,M (sq)) ≡ a(q) mod M by (12) �

7 Kolyvagin sequence

By standard Iwasawa theory, (A∞)Γn = An (see [Wa] for a proof). Since An is finite, A∞
is a finitely generated torsion R∞-module by Nakayama’s lemma. By structure theory

of R∞-modules, there is an exact sequence of R∞-modules

0 −→
r⊕
i=1

R∞/(fi) −→ A∞ −→ D −→ 0, (14)

where D is finite. By definition, char(A∞) =
∏
i
fiR∞. Let yi ∈ A∞ be the image of

1 ∈ R∞/(fi) and A0
∞ =

r∑
i=1

R∞yi. Suppose J is the annihilator of D = A∞/A
0
∞. Then

J is of finite index in R∞. Let M be a fixed power of p.

From (14), we obtain an exact sequence

DΓn −→
r⊕
i=0

Rn/(fi) −→ An −→ DΓn −→ 0. (15)

It follow that Rn/char(A∞)Rn is finite. Let

Nn =| An | . |
Rn

char(A∞)Rn
|, M ′ = MNn.

Definition : Let 0 ≤ k ≤ r. A Kolyvagin sequence of length k is a k-tuple Q =

(q1, q2, . . . , qk) of primes in F such that

• the qi lie above distinct rational primes in SM , and

• Frobqi = σi|Ln , where σi ∈ G(L∞/F∞) corresponds to yi ∈ A∞ under Artin

reciprocity [where yi are as defined immediately after (14)].

For a Kolyvagin sequence Q, we define the square-free integer s(Q) as

s(Q) =
k∏
i=1

qi, where qi = qi|Q.
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8 Key proposition

In this section, we work out the details of the proof of proposition 4.1. It is a simplified

version of Rubin’s arguments in (see [Ru 1], [Ru 2], [Ru 3], and [Ru 4]) together with

ideas of Coates [Co].

Let Π(k, n,M) be the set of all Kolyvagin sequence of length k. Let Ψ(k, n,M) be the

ideal in Rn,M = Rn/MRn generated by

{ψ(κφ,M (s(Q))) | Q ∈ Π(k, n,M), ψ ∈ HomRn(Rn,Mκφ,M (s(Q)), Rn,M )}.

In order to prove 4.1, we need the following key proposition.

Proposition 8.1 JΨ(k, n,MNn)Rn,M ⊂ fk+1Ψ(k + 1, n,M).

The following result is from Rubin [Ru 4]:

Lemma 8.2 Let B be a p-torsion free finitely generated Zp[G]-module where G is a

finite abelian group. If f ∈ Zp[G] is not a zero divisor, b ∈ B, and

{ψ(b) : ψ ∈ HomZp[G](B,Zp[G])} ⊂ fZp[G],

then b ∈ fB.

Proposition 4.1 can be deduced from proposition 8.1 and lemma 8.2 as follows :

For k = 0, Π(0, n,M) has just the empty sequence and

{ψ(κφ,M (1)) mod M | ψ ∈ HomRn(Ēn, Rn)} ⊂ Ψ(0, n,M).

In other words,

{ψ(φ(ζn)) mod M | ψ ∈ HomRn(Ēn, Rn)} ⊂ Ψ(0, n,M).

If we use proposition 3.4 recursively, we obtain

JrΨ(0, n,MN r
n)Rn,M ⊂ char(A∞)Ψ(r, n,M) ⊂ char(A∞)Rn,M

⇒ Jrψ(φ(ζn))Rn,M ⊂ char(A∞)Rn,M ∀ψ ∈ HomRn(Ēn, Rn) ∀M

⇒ Jrψ(φ(ζn))Rn ⊂ char(A∞)Rn.

Substituting Ēn for B in the lemma above, we get

Jr(φ(ζn)) ⊂ char(A∞)Ēn.
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Taking inverse limit as n goes to infinity, we find that

JrE∞ ⊂ char(A∞)E∞.

There is an obvious exact sequence

0 −→ E∞/J
rE∞ −→ E∞/J

rE∞ −→ E∞/E∞ −→ 0.

Since Jr is an ideal of finite index in R∞, E∞/J
rE∞ is finite and so its characteristic

ideal is trivial. Thus,

char(E∞/E∞) = char(E∞/JrE∞). (16)

The exact sequence of R∞-modules

0 −→ char(A∞)E∞/JrE∞ −→ E∞/J
rE∞ −→ E∞/char(A∞)E∞ −→ 0

implies that

char(E∞/char(A∞)E∞)|char(E∞/JrE∞). (17)

It is clear from the structure theorem ofR∞-modules that char(A∞) | char(E∞/char(A∞)E∞).

Therefore, (16) and (17) imply that

char(A∞)|char(E∞/E∞).

In order to facilitate the proof of proposition 8.1, we need the following lemma.

Lemma 8.3 Let 0 ≤ k ≤ r and

Q = (q1, q2, . . . qk+1) ∈ Π(k + 1, n,MNn)

be a Kolyvagin sequence. Let q be the rational prime below qk+1 = q and qi be the rational

prime below qi for 1 ≤ i ≤ k. Let s =
k∏
i=1

qi. Then there is a Galois equivariant map

ψ̃ : Rn,Mκφ,M (sq) −→ Rn,M ,

such that for any ρ ∈ J , we have

ρλ̄q(κφ,M ′(s)) ≡ fk+1ψ̃(κφ,M (sq)) mod M.
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Proof : Let Ci be the class of qi in An = A. Let Ān be the quotient of An by the

Rn-submodule generated by classes of C1,C2, . . .Ck. Let Ak∞ =
∑k

i=0R∞yi ⊂ A0
∞. In

the exact sequence (14) of pp. 13, the ideal J of R∞ annihilates D. Let Jn be the image

of J in Rn. From the exact sequence (15) of pp. 13, it is clear that Jn annihilates the

kernel of the map

(A0
∞/A

k
∞)⊗Rn −→ Ān.

Let A be the annihilator of the image C̄k of the ideal class of q in Ān. The annihilator

of the class of q in (A0
∞/A

0
k)⊗Rn is fk+1Rn. So we have

JnA ⊂ fk+1Rn. (18)

By proposition 6.2 (i), we have

(κφ,M ′(sq)) = [κφ,M ′(sq)]q mod (M ′I, RnC1 +RnC2 + . . .+RnCk). (19)

Since |A| divides M ′ = MNn, [κφ,M ′(sq)]q ∈ ARn,M ′q, and by (18), ρ[κφ,M ′(sq)]q ∈
fk+1Rn,M ′ . Since fk+1 is not a zero divisor , we have a well defined map

f−1
k+1 : fk+1Rn,M ′ −→ Rn,M ,

fk+1g 7→ h, where h is given by

fk+1g = fk+1h+MNnh̃

(⇒ g = h+M.f−1
k+1Nnh̃, note that fk+1 divides Nn.)

We define a map

ψ̃ : Rn,Mκφ,M (sq) −→ Rn,M , by

ψ̃(κφ,M (sq))q = f−1
k+1ρ[κφ,M ′(sq)]q (20)

and extend by linearity to the whole of Rn,Mκφ,M (sq). We have to verify that ψ̃ is

well-defined. Let κφ,M (sq)τ = αM for some τ ∈ Rn. We want to show that

τψ̃(κφ,M (sq)) ∈MRn,M ′ .

By (19),

(α) = [α]q mod (NnI, RnC1 +RnC2 + . . .+RnCk).

Recall that M ′ = MNn, where Nn is divisible by the order of An. Therefore, [α]q ∈
ARn,M ′q and by (18),

ρ[α]q ∈ fk+1Rn,M ′q

ψ̃(κφ,M (sq)τ )q = τf−1
k+1ρ[κφ,M (sq)]q

= f−1
k+1ρM [α]q ⊂MRn,M ′ .
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Hence ψ̃ is well defined. Now, proposition 2.3 (ii), (20) and (11) imply that

fk+1ψ̃(κφ,M (sq)) ≡ ρλ̄q(κφ,M ′(s)) mod M. �

Proof of Proposition 8.1 : Let us consider any Kolyvagin sequence of length k in

Π(k, n,MNn), say Q = (q1, q2, . . . qk) and let s = s(Q). Suppose ψ is an arbitrary

element in HomRn(Rn,M ′κφ,M ′(s), Rn,M ′). We want to show that

ρψ(κφ,M ′(s))Rn,M ⊂ fk+1Ψ(k + 1, n,M) ∀ρ ∈ J.

We will extend the above Kolyvagin sequence to one of length k+1. We apply Cebotarev

density theorem in the following way:

Let

W = Rn,M ′κφ,M ′(s) ⊂ F×/(F×)M
′
↪→ F (µM ′)×/(F (µM ′)×)M

′
.

See the proof of proposition 15.47 in [Wa] for the second injection above. Let F ′ =

F (µM ′), L = Ln (the maximal unramified abelian p-extension of F ) andH = F (µM ′ ,W
1

M′ ).

We have the following diagram of fields:

H = F (µM ′ ,W
1

M′ )

F ′ = F (µM ′)

F

b
b

b
b

bb
L

We have a Kummer pairing

G(H/F ′)×W −→ µM ′ ,

and G(F ′/Q)-isomorphism

G(H/F ′) ∼−→ Hom(W,µM ′).
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Complex conjugation acts trivially on the ideals of the real field F , therefore it acts

trivially on G(L/F ) by global class field theory. It clearly implies that complex con-

jugation acts trivially on G(LF ′/F ′). However, complex conjugation acts non-trivially

on Hom(W,µM ′), and hence on G(H/F ′). Thus, LF ′ ∩ H = F ′. Then ramification

consideration tells us that L ∩H = F . If we ignore the Galois structure, then we have

G(H/F ′) ' Hom(W,Z/M ′Z). (21)

Let

τ : (Z/M ′Z)[G] −→ Z/M ′Z,
∑

agg 7−→ a1.

We can define a map τ ◦ ψ by composition:

τ ◦ ψ : W
ψ−→ Rn,M ′ = (Z/M ′Z) [G] τ−→ Z/M ′Z.

Let γ in G(H/F ′) ⊂ G(H/F ) correspond to τ ◦ ψ under (21). Let σ in G(LH/F ) be

such that

σ |L= σk+1 |L, σ |H= γ.

It is possible to find such a σ because L ∩ H = F . By Cebotarev Density Theorem,

there are infinitely many degree 1 primes in F such that the corresponding Frobenius in

G(LH/F ) is in the same conjugacy class as σ. We pick one such q which is unramified

in H/F . Since only finitely many primes are ramified in the finite extension H/F , such

a choice is possible. Let q be the rational prime below q. As q is an unramified prime of

degree 1, q splits in F . Hence, NF/Qq = q. Since σ fixes F (µM ′), Frobq fixes the residue

field of F (µM ′) at q. Therefore,

NF/Qq = q ≡ 1 mod M ′.

Thus, q is a prime in SM (recall that M ′ = MNn). We can now extend Q to a Kolyvagin

sequence Q′ = (q1, . . . qk, q) of length k+ 1. Clearly, s(Q′) = sq. By lemma 3.6, there is

a Galois equivariant map

ψ̃ : Rn,Mκφ,M (sq) −→ Rn,M ,

such that

ρλ̄q(κφ,M ′(s)) ≡ fk+1ψ̃(κφ,M (sq)) mod M. (22)

Let q̄ be a prime of H above q such that Frobq̄ = σ. Let w ∈ W . Then vq̄(w) ≡
0 mod M ′. Now,

τ ◦ ψ(w) = 0 ⇔ γ(w
1

M′ ) = w
1

M′

⇔ Frobq̄(w
1

M′ ) = w
1

M′

⇔ w is a M ′ − th power mod q̄ ∩ F = q.
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Suppose λ̄q(w) =
∑
agg. By definition of λ̄q, τ ◦ λ̄q(w) = 0 iff w is M ′-th power mod q.

Thus,

τ ◦ λ̄q(w) = 0 ⇔ w is a M ′-th power mod q ⇔ τ ◦ ψ(w) = 0.

Then,

ψ = uλ̄q, u ∈ (Z/M ′Z)×.

(The above statement can be easily proved, as shown in lemma 15.49 of [Wa]).

From (22), it is now obvious that

ρψ(κφ,M ′(s)) ≡ uρλ̄q(κφ,M ′(s)) ≡ ufk+1ψ̃(κφ,M (sq)) mod M.

It is now clear that

JΨ(k, n,MNn) ⊂ fk+1Ψ(k + 1, n,M). �
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in Math. 87] (Birkhäuser, Boston, 1990) pp. 435–483.

[La] Lang, S.; Cyclotomic Fields, [Springer- Verlag, 1978.]

[Ru 1] Rubin, K.; ‘The main conjecture’, Appendix to : Cyclotomic fields I and II, S.

Lang. Graduate Texts in Math., vol. 121, New York: Springer-Verlag (1990),

pp. 397–419.

19



[Ru 2] Rubin, K.; ‘The one variable main conjecture for elliptic curves with complex

multiplication’, L-function and arithmetic, [London Mathematical Society Lec-

ture Notes 156 (Cambridge University Press, 1991).]

[Ru 3] Rubin, K.; ‘The “main conjectures” of Iwasawa theory for imaginary quadratic

fields’, Inventiones Math., vol. 103 (1991), pp. 25–68.

[Ru 4] Rubin, K.; ‘Elliptic curves with complex multiplication and the conjecture of

Birch and Swinnerton-Dyer’ Arithmetic theory of elliptic curves (Cetraro,

1997), Lecture Notes in Math., 1716, Springer, Berlin, (1999) pp 167–234.

[Sa] Saikia, A.; ‘A simple proof of a lemma of Coleman’, Math Prc. Camb. Phil.

Soc., vol 130 no. 2 (2001), pp. 209–220.

[Wa] Washington, L.; Introduction to Cyclotomic Fields, [Springer- Verlag, 1997.]

20


