Unitarity and Analyticity Constraints on π-K Form Factors

B. Ananthanarayan

Centre for High Energy Physics, Indian Institute of Science,
Bangalore 560 012, India

IIT Guwahati
February 20-22, 2014

Work done in collaboration with
Gauhar Abbas, Irinel Caprini and I. Sentitemsu Imsong
The process and definitions
The process and definitions

Status of experimental information and inputs
The process and definitions
Status of experimental information and inputs
QCD correlators and dispersion relations
The process and definitions
Status of experimental information and inputs
QCD correlators and dispersion relations
Conformal methods and constraints
Results
The process and definitions
Status of experimental information and inputs
QCD correlators and dispersion relations
Conformal methods and constraints
Results
Digression on $D - \pi$ form factors
The process and definitions
Status of experimental information and inputs
QCD correlators and dispersion relations
Conformal methods and constraints
Results
Digression on $D - \pi$ form factors
Conclusions
The process and definitions

Status of experimental information and inputs

QCD correlators and dispersion relations

Conformal methods and constraints

Results

Digression on $D - \pi$ form factors

Conclusions

Based on the papers: Gauhar Abbas, BA, I. Caprini and I. Sentitemsu Imsong, Physical Review, D 82 (2010) 094018
(see also, references therein)
Related investigations

- Methods have also been used for the pion electromagnetic form factor and heavy light form factors
Related investigations

- Methods have also been used for the pion electromagnetic form factor and heavy light form factors.

- Of these the most recent are listed below.
Related investigations

- Methods have also been used for the pion electromagnetic form factor and heavy light form factors.
- Of these the most recent are listed below.
- For the pion electromagnetic form factor, see BA, Irinel Caprini, Diganta Das and I. Sentitemsu Imsong, “Two-pion low-energy contribution to the muon g-2 with improved precision from analyticity and unitarity”, arXiv:1312.5849 and references therein.
Methods have also been used for the pion electromagnetic form factor and heavy light form factors.

Of these the most recent are listed below.

For the pion electromagnetic form factor, see BA, Irinel Caprini, Diganta Das and I. Sentitemsu Imsong, “Two-pion low-energy contribution to the muon g-2 with improved precision from analyticity and unitarity”, arXiv:1312.5849 and references therein.

Process and Definitions

- The semi-leptonic decays are the processes $K \rightarrow \pi l \nu_l$ (and $\tau \rightarrow \pi K \nu_\tau$).
The semi-leptonic decays are the processes $K \to \pi l \nu_l$ (and $\tau \to \pi K \nu_\tau$).

The matrix element for K_{l3}^+ has the structure:

$$T = \frac{G_F}{\sqrt{2}} V_{us} \ell^\mu F^+(p', p)$$

$$\ell^\mu = \bar{u}(p_\nu) \gamma^\mu (1 - \gamma_5) v(p_1)$$

$$F^+(p', p)_\mu = \langle \pi^0(p') | \bar{s} \gamma_\mu u | K^+(p) \rangle = \frac{1}{\sqrt{2}} ((p' + p)_\mu f_+(t) + (p - p')_\mu f_-(t))$$
Process and Definitions

- The semi-leptonic decays are the processes $K \to \pi l \nu_l$ (and $\tau \to \pi K \nu_\tau$).
- The matrix element for K_{l3}^+ has the structure:

$$T = \frac{G_F}{\sqrt{2}} V_{us} l^\mu F_\mu^+(p', p)$$
$$l^\mu = \bar{u}(p_\nu) \gamma^\mu (1 - \gamma_5) \nu(p_l)$$

$$F^+(p', p)_\mu = \langle \pi^0(p')| \bar{s}\gamma_\mu u | K^+(p)\rangle = \frac{1}{\sqrt{2}} ((p' + p)_\mu f_+(t) + (p - p')_\mu f_-(t))$$

- Neutral $F^0_\mu(p', p)$ defined without the $1/\sqrt{2}$

The semi-leptonic decays are the processes $K \to \pi l \nu_l$ (and $\tau \to \pi K \nu_\tau$).

The matrix element for K_{l3}^+ has the structure:

$$T = \frac{G_F}{\sqrt{2}} V_{us} l^\mu F^+_{\mu}(p', p)$$

$$l^\mu = \bar{u}(p_\nu) \gamma^\mu (1 - \gamma_5) v(p_l)$$

$$F^+(p', p)_\mu = \langle \pi^0(p')|\bar{s}\gamma_\mu u|K^+(p)\rangle = \frac{1}{\sqrt{2}}((p' + p)_\mu f_+(t) + (p - p')_\mu f_-(t))$$

Neutral $F^0_\mu(p', p)$ defined without the $1/\sqrt{2}$

$f_+(t)$, $t = (p' - p)^2$ is known as the vector form factor as it is the P-wave projection of the crossed channel matrix element $\langle 0|\bar{s}\gamma_\mu u|K^+\pi^0, in\rangle$.
The scalar form factor

\[
f_0(t) = f_+(t) + \frac{t}{M_K^2 - M_\pi^2} f_-(t)
\]

is the analogous S-wave projection
Definitions continued

- The scalar form factor

\[f_0(t) = f_+(t) + \frac{t}{M^2_K - M^2_\pi} f_-(t) \]

is the analogous S-wave projection

- The physical region is \(m_t^2 \leq t \leq (M_K - M_\pi)^2 \) where the form factor is real
The scalar form factor

\[f_0(t) = f_+(t) + \frac{t}{M_K^2 - M_\pi^2} f_-(t) \]

is the analogous S-wave projection

The physical region is \(m_t^2 \leq t \leq (M_K - M_\pi)^2 \) where the form factor is real

Consider the expansion about \(t = 0 \)

\[f_0(t) = f_+(0) \left(1 + \lambda'_0 \frac{t}{M_\pi^2} + \frac{1}{2} \lambda''_0 \frac{t^2}{M_\pi^4} + \cdots \right), \]

\(\lambda'_0 = M_\pi^2 \langle r_{\pi K}^2 \rangle / 6 \), \(\lambda''_0 = 2M_\pi^4 c \) are related to the radius \(\langle r_{\pi K}^2 \rangle \) and curvature, \(c \) used alternatively in the literature.
The scalar form factor

\[f_0(t) = f_+(t) + \frac{t}{M_K^2 - M_{\pi}^2} f_-(t) \]

is the analogous S-wave projection

The physical region is \(m_t^2 \leq t \leq (M_K - M_{\pi})^2 \) where the form factor is real

Consider the expansion about \(t = 0 \)

\[f_0(t) = f_+(0) \left(1 + \lambda'_0 \frac{t}{M_{\pi}^2} + \frac{1}{2} \lambda''_0 \frac{t^2}{M_{\pi}^4} + \cdots \right), \]

\[\lambda'_0 = M_{\pi}^2 \langle r_{\pi K}^2 \rangle / 6, \quad \lambda''_0 = 2 M_{\pi}^4 c \]

are related to the radius \(\langle r_{\pi K}^2 \rangle \) and curvature, \(c \) used alternatively in the literature.

Analogously defined for the vector form factor.
Sources of information

- The value $f_+(0)$ comes from theory.
The value $f_+(0)$ comes from theory.

Chiral theorems for the scalar form factors: values at special points are related to F_π/F_K.
The value $f_+(0)$ comes from theory.

Chiral theorems for the scalar form factors: values at special points are related to F_π/F_K.

The slope and curvature parameters are determined from fitting to Dalitz plot distributions. Detailed discussion on experiments will be presented.
Sources of information

- The value $f_+(0)$ comes from theory.
- Chiral theorems for the scalar form factors: values at special points are related to F_π/F_K.
- The slope and curvature parameters are determined from fitting to Dalitz plot distributions. Detailed discussion on experiments will be presented.
- More recently from τ decays: BELLE has fitted them with resonances in the time-like region on the unitarity cut.
The value $f_+(0)$ comes from theory.

Chiral theorems for the scalar form factors: values at special points are related to F_π / F_K.

The slope and curvature parameters are determined from fitting to Dalitz plot distributions. Detailed discussion on experiments will be presented.

More recently from τ decays: BELLE has fitted them with resonances in the time-like region on the unitarity cut.

Solutions of Muskelishvili-Omnès equations for form factors using phase shift information and some additional inputs to self-consistently generate them. Work of Moussallam, group of Jamin, Oller, Pich, Boito, Escribano.
$f_+(0) = 1$ in the limit of $m_d = m_u = m_s$ ($SU(3)$ limit)
\(f_+(0) = 1 \) in the limit of \(m_d = m_u = m_s \) (\(SU(3) \) limit)

- Corrections to the relation due to \(SU(3) \) breaking: \(\sim 20\% \).
\[f_+(0) = 1 \] in the limit of \(m_d = m_u = m_s \) (\(SU(3) \) limit)

- Corrections to the relation due to \(SU(3) \) breaking: \(\sim 20\% \).
- Even smaller due to Ademollo-Gatto theorem.
\(f_+(0) = 1 \) in the limit of \(m_d = m_u = m_s \) (\(SU(3) \) limit).

Corrections to the relation due to \(SU(3) \) breaking: \(\sim 20\% \).

Even smaller due to Ademollo-Gatto theorem.

Crucial for knowledge of Cabibbo-Kobayashi-Maskawa matrix as the combination \(f_+(0)V_{us} \) appears in the expression for rates and Dalitz plot densities.
\(f_+(0) = 1 \) in the limit of \(m_d = m_u = m_s \) (\(SU(3) \) limit)

- Corrections to the relation due to \(SU(3) \) breaking: \(\sim 20\% \).

- Even smaller due to Ademollo-Gatto theorem.

- Crucial for knowledge of Cabibbo-Kobayashi-Maskawa matrix as the combination \(f_+(0)V_{us} \) appears in the expression for rates and Dalitz plot densities.

\[f_+(0) = 1 \text{ in the limit of } m_d = m_u = m_s \text{ (} SU(3) \text{ limit)} \]

- Corrections to the relation due to \(SU(3) \) breaking: \(\sim 20\% \).
- Even smaller due to Ademollo-Gatto theorem.
- Crucial for knowledge of Cabibbo-Kobayashi-Maskawa matrix as the combination \(f_+(0)V_{us} \) appears in the expression for rates and Dalitz plot densities.
- Recent determinations from the lattice, e.g., RBC+UKQCD collaboration [P. A. Boyle et al., Physical Review Letters 100 (2008) 141601] gives \(f_+(0) = 0.964(5) \). They use 2+1 flavour of dynamical wall quarks.
 (recent update, G. Colangelo et al., European Physical Journal, C (2011) 71:1695 [FLAG report] gives 0.956 ± 0.008)

\[f_0(M_K^2 - M_\pi^2) = \frac{F_K}{F_\pi} + \Delta_{CT} \]

\(\Delta_{CT} \simeq 0 \) to two-loops in chiral perturbation theory (J. Bijnens and P. Talavera, Nuclear Physics B 669 (2003) 341.)

This point called \(CT_1 \) is above the end-point of the \(K_{l3} \) but is in the analyticity part of the timelike region.

\[f_0(M_K^2 - M_\pi^2) = F_K/F_\pi + \Delta_{CT} \]

\(\Delta_{CT} \simeq 0 \) to two-loops in chiral perturbation theory (J. Bijnens and P. Talavera, Nuclear Physics B 669 (2003) 341.)

This point called \(CT_1 \) is above the end-point of the \(K_{l3} \) but is in the analyticity part of the timelike region.

Knowledge of \(F_K/F_\pi \) at high precision is therefore crucial.

\[
f_0(M_\pi^2 - M_K^2) = \frac{F_\pi}{F_K} + \Delta_{CT}
\]

\(\Delta_{CT} = 0.03\) is one-loop in chiral perturbation theory (J. Gasser and H. Leutwyler, Nuclear Physics B250 (1985) 517).

This point known as \(CT_2\) is in the spacelike region.

\[f_0(M_{\pi}^2 - M_K^2) = \frac{F_\pi}{F_K} + \Delta_{CT} \]

\(\Delta_{CT} = 0.03 \) is one-loop in chiral perturbation theory (J. Gasser and H. Leutwyler, Nuclear Physics B250 (1985) 517).

This point known as \(CT_2 \) is in the spacelike region.

Difficult to estimate higher order corrections (to our knowledge not yet done in the literature).
No such relations for vector form factor.
No such relations for vector form factor.

As a result, scalar form factor much better suited to theoretical analysis.
No such relations for vector form factor.

As a result, scalar form factor much better suited to theoretical analysis.

These relations in the unphysical region will be used by us in the unitarity bound technique.
No such relations for vector form factor.

As a result, scalar form factor much better suited to theoretical analysis.

These relations in the unphysical region will be used by us in the unitarity bound technique.

\[\frac{F_K}{F_\pi} = 1.193 \pm 0.006 \] according to recent lattice evaluations (see e.g., L. Lellouch, arXiv:0902.4545; see also A. Bazavov et al. [MILC collaboration], arXiv:0910.2966, which uses 2+1 flavor with improved staggered quark action). Confirmed by S. Dürr et al. [BMW collaboration], arXiv:1001.4692. (FLAG report gives 1.193 ± 0.005 for 2+1 flavors averaged over three calculations, and 1.210 ± 0.018 with 2 flavors and a single calculation)
No such relations for vector form factor.

As a result, scalar form factor much better suited to theoretical analysis.

These relations in the unphysical region will be used by us in the unitarity bound technique.

\[\frac{F_K}{F_\pi} = 1.193 \pm 0.006 \] according to recent lattice evaluations (see e.g., L. Lellouch, arXiv:0902.4545; see also A. Bazavov et al. [MILC collaboration], arXiv:0910.2966, which uses 2+1 flavor with improved staggered quark action). Confirmed by S. Dürr et al. [BMW collaboration], arXiv:1001.4692.

(FLAG report gives 1.193 ± 0.005 for 2+1 flavors averaged over three calculations, and 1.210 ± 0.018 with 2 flavors and a single calculation)

An extremely interesting joint analysis of \(f_+(0) \) and \(\frac{F_K}{F_\pi} \) is by V. Bernard and E. Passemar, JHEP 1004 (2010) 001
ISTRA: Experimental setup at the IHEP 70 GeV proton synchrotron U-70. Secondary beam with about 25 GeV protons.
Experiments

- KLOE detector at DAFNE (e^+e^- collider at 1.02 GeV) $K_L \rightarrow \pi\mu\nu$ analysis based on about 1.8 million events from 328 pb$^{-1}$. F. Ambrosino et al., JHEP 0712 (2007) 105.
Experiments

- KLOE detector at DAFNE (e^+e^- collider at 1.02 GeV) $K_L \to \pi \mu \nu$ analysis based on about 1.8 million events from 328 pb$^{-1}$. F. Ambrosino et al., JHEP 0712 (2007) 105.

Experiments

- **KLOE detector at DAFNE** (e^+e^- collider at 1.02 GeV) $K_L \rightarrow \pi\mu\nu$ analysis based on about 1.8 million events from 328 pb$^{-1}$. F. Ambrosino et al., JHEP 0712 (2007) 105.

- **KTeV experiment at Fermilab**: 1.9 million K_L electron and 1.5 million K_L muono decays.
D. Epifanov et al., Physics Letters B 654 (2007) 65 reports measurement of modulus and phase of the $K\pi$ form factors in terms of resonances, based on about 53,000 lepton tagged events.
D. Epifanov et al., Physics Letters B 654 (2007) 65 reports measurement of modulus and phase of the $K\pi$ form factors in terms of resonances, based on about 53,000 lepton tagged events.

Note that the measurement here is in the time-like region on the unitarity cut. Produces an important consistency check.
τ decays from BELLE

D. Epifanov et al., Physics Letters B 654 (2007) 65 reports measurement of modulus and phase of the $K\pi$ form factors in terms of resonances, based on about 53,000 lepton tagged events.

Note that the measurement here is in the time-like region on the unitarity cut. Produces an important consistency check.

Mushkelishvili-Omnès study of πK, πK^*, $K\rho$ and use of high statistics LASS experiment phase shifts used to produce the πK vector form factor and compared with BELLE (B. Moussallam, European Physical Journal C 53 (2008) 401)
D. Epifanov et al., Physics Letters B 654 (2007) 65 reports measurement of modulus and phase of the $K\pi$ form factors in terms of resonances, based on about 53,000 lepton tagged events.

Note that the measurement here is in the time-like region on the unitarity cut. Produces an important consistency check.

Mushkelishvili-Omnès study of πK, πK^*, $K\rho$ and use of high statistics LASS experiment phase shifts used to produce the πK vector form factor and compared with BELLE (B. Moussallam, European Physical Journal C 53 (2008) 401)

Theoretical approaches

- Our work is motivated by the need to exploit in a complete and optimal way the available information.
Theoretical approaches

- Our work is motivated by the need to exploit in a complete and optimal way the available information.
- We use analyticity, dispersion relations and theoretical inputs.
Theoretical approaches

- Our work is motivated by the need to exploit in a complete and optimal way the available information.

- We use analyticity, dispersion relations and theoretical inputs.

- We use experimental scattering phase shifts determined using Roy-Steiner equations via Watson theorem (the phase of the form factor is the scattering phase shift in the elastic region).
Our work is motivated by the need to exploit in a complete and optimal way the available information.

We use analyticity, dispersion relations and theoretical inputs.

We use experimental scattering phase shifts determined using Roy-Steiner equations via Watson theorem (the phase of the form factor is the scattering phase shift in the elastic region).

Uses experimental information in such a way as to optimize all available inputs, and the modulus information only to evaluate an integral.
Our work is motivated by the need to exploit in a complete and optimal way the available information.

We use analyticity, dispersion relations and theoretical inputs.

We use experimental scattering phase shifts determined using Roy-Steiner equations via Watson theorem (the phase of the form factor is the scattering phase shift in the elastic region).

Uses experimental information in such a way as to optimize all available inputs, and the modulus information only to evaluate an integral.

Theoretical approaches

- Our work is motivated by the need to exploit in a complete and optimal way the available information.
- We use analyticity, dispersion relations and theoretical inputs.
- We use experimental scattering phase shifts determined using Roy-Steiner equations via Watson theorem (the phase of the form factor is the scattering phase shift in the elastic region).
- Uses experimental information in such a way as to optimize all available inputs, and the modulus information only to evaluate an integral.
- Our phase and modulus data come from Moussallam, group of Jamin et al., and from BELLE.
Consider the QCD correlator

\[\chi_0(Q^2) \equiv \frac{\partial}{\partial q^2} [q^2 \Pi_0] = \frac{1}{\pi} \int_{t_+}^{\infty} dt \frac{t \text{Im}\Pi_0(t)}{(t + Q^2)^2} , \]

\[\text{Im}\Pi_0(t) \geq \frac{3}{2} \frac{t_+ t_-}{16\pi} \frac{[(t - t_+)(t - t_-)]^{1/2}}{t^3} |f_0(t)|^2 , \]

with \(t_{\pm} = (M_K \pm M_\pi)^2 \).
Consider the QCD correlator

\[\chi_0(Q^2) \equiv \frac{\partial}{\partial q^2} \left[q^2 \Pi_0 \right] = \frac{1}{\pi} \int_{t_+}^{\infty} dt \frac{t \text{Im}\Pi_0(t)}{(t + Q^2)^2} , \]

\[\text{Im}\Pi_0(t) \geq \frac{3}{2} \frac{t_+ t_-}{16\pi} \left[(t - t_+)(t - t_-) \right]^{1/2} \frac{1}{t^3} \left| f_0(t) \right|^2 , \]

with \(t_\pm = (M_K \pm M_\pi)^2 \).

Positive definite and can be bounded.
Consider the QCD correlator

\[\chi_0(Q^2) \equiv \frac{\partial}{\partial q^2} \left[q^2 \Pi_0 \right] = \frac{1}{\pi} \int_{t_+}^\infty dt \frac{t \text{Im} \Pi_0(t)}{(t + Q^2)^2}, \]

\[\text{Im} \Pi_0(t) \geq \frac{3}{2} \frac{t_+t_-}{16\pi} \frac{[(t - t_+)(t - t_-)]^{1/2}}{t^3} |f_0(t)|^2, \]

with \(t_\pm = (M_K \pm M_\pi)^2 \).

Positive definite and can be bounded.

Bounds can be obtained using analyticity to transform the problem, and to input values of the form factor and its derivatives at \(t = 0 \) and/or knowledge at various points in the analyticity region (method of unitarity bounds).
On the other hand, in pQCD when $Q \gg \Lambda_{\text{QCD}}, m_q, \alpha_S$, \overline{MS} scheme.

$$\chi_0(Q^2) = \frac{3(m_s - m_u)^2}{8\pi^2 Q^2} \left[1 + 1.80\alpha_s + 4.65\alpha_s^2 + 15.0\alpha_s^3 + 57.4\alpha_s^4 \ldots\right].$$
On the other hand, in pQCD when $Q \gg \Lambda_{QCD}, m_q, \alpha_s$ \overline{MS} scheme.

$$\chi_0(Q^2) = \frac{3(m_s - m_u)^2}{8\pi^2 Q^2} \left[1 + 1.80\alpha_s + 4.65\alpha_s^2 + 15.0\alpha_s^3 + 57.4\alpha_s^4 \ldots \right].$$

On the other hand, in pQCD when $Q \gg \Lambda_{QCD}, m_q, \alpha_s$ \overline{MS} scheme.

$$\chi_0(Q^2) = \frac{3(m_s - m_u)^2}{8\pi^2 Q^2} \left[1 + 1.80\alpha_s + 4.65\alpha_s^2 + 15.0\alpha_s^3 + 57.4\alpha_s^4 \ldots \right].$$

Reverse problem: to constrain λ'_0, λ''_0 and $f_0(\Delta_{K\pi})$ and $f_0(\Delta_{K\pi})$.
Transforming via Conformal map

\[\frac{z - 1}{z + 1} = i \sqrt{\frac{t}{t_+} - 1} \]
Transforming via Conformal map

\[\frac{z - 1}{z + 1} = i \sqrt{\frac{t}{t_+}} - 1 \]
The problem transformed

We can now use the conformal map to transform this to an integral that reads

\[\frac{1}{2\pi} \int_0^{2\pi} |h(\exp(i\theta))|^2 \leq I_{PQCD} \]

and needs to be bounded.
We can now use the conformal map to transform this to an integral that reads

\[\frac{1}{2\pi} \int_{0}^{2\pi} |h(\exp(i\theta))|^2 \leq I_{\text{PQCD}} \]

and needs to be bounded.

This requires the knowledge of the outer function associated with the function multiplying \(|f_0(t)|^2\) and the Jacobian of the transformation.
The problem transformed

- We can now use the conformal map to transform this to an integral that reads

\[
\frac{1}{2\pi} \int_{0}^{2\pi} |h(\exp(i\theta))|^2 \leq I_{\text{PQCD}}
\]

and needs to be bounded.

- This requires the knowledge of the **outer function** associated with the function multiplying \(|f_0(t)|^2 \) and the Jacobian of the transformation.

- For the case at hand:

\[
w(z) = \frac{3}{16\sqrt{2\pi}} \frac{M_K - M_\pi}{M_K + M_\pi} \sqrt{1 - z (1 + z)^{3/2}} \\
\times \left(\frac{(1 + z(-Q^2))^2}{(1 - z z(-Q^2))^2} \frac{(1 - z z(t_-))^{1/2}}{(1 + z(t_-))^{1/2}} \right),
\]

\[
h(z) = w(z)f_0(z).
\]
Analytic Interpolation Theory and Hardy Spaces

- The class of problems involving such pieces of information comes under the purview of ‘analytic interpolation theory’
The class of problems involving such pieces of information comes under the purview of ‘analytic interpolation theory’

The class of functions is defined on the unit disc $|z| < 1$
The class of problems involving such pieces of information comes under the purview of ‘analytic interpolation theory’

The class of functions is defined on the unit disc $|z| < 1$

Typical denominators involving $(1 - z_1 z_2^*)$
The class of problems involving such pieces of information comes under the purview of ‘analytic interpolation theory’.

The class of functions is defined on the unit disc $|z| < 1$.

Typical denominators involving $(1 - z_1 z_2^*)$.

Theory of Hardy Spaces (H^2) involves square integrable functions on the open unit disc.
The class of problems involving such pieces of information comes under the purview of ‘analytic interpolation theory’

The class of functions is defined on the unit disc $|z| < 1$

Typical denominators involving $(1 - z_1 z_2^*)$

Theory of Hardy Spaces (H^2) involves square integrable functions on the open unit disc

Ideal setting for us since the original integral now is reduced to a series expansion on the Hardy Space and involves only the expansion coefficients.
Power series and origin of the bound

- Power series: \(h(z) = a_0 + a_1 z + a_2 z^2 + \ldots \) [Fourier series with non-negative powers of \(e^{i\theta} \)]. Guaranteed for such functions.
Power series and origin of the bound

- Power series: \(h(z) = a_0 + a_1 z + a_2 z^2 + \ldots \) [Fourier series with non-negative powers of \(e^{i\theta} \)]. Guaranteed for such functions.

- Very important to note that the origin in the complex-\(t \) plane is mapped to the origin in the complex-\(z \) plane. Expansion in powers of \(z \) is related to expansion in powers of \(t \), which is why slope and curvature parameters enter here.
Power series and origin of the bound

- Power series: $h(z) = a_0 + a_1 z + a_2 z^2 + \ldots$ [Fourier series with non-negative powers of $e^{i\theta}$]. Guaranteed for such functions.

- Very important to note that the origin in the complex-t plane is mapped to the origin in the complex-z plane. Expansion in powers of z is related to expansion in powers of t, which is why slope and curvature parameters enter here.

- Furthermore and significantly, square integrability implies $I = |a_0|^2 + |a_1|^2 + \ldots$ [Parseval theorem]
Power series and origin of the bound

- Power series: \(h(z) = a_0 + a_1 z + a_2 z^2 + \ldots \) [Fourier series with non-negative powers of \(e^{i\theta} \)]. Guaranteed for such functions.

- Very important to note that the origin in the complex-\(t \) plane is mapped to the origin in the complex-\(z \) plane. Expansion in powers of \(z \) is related to expansion in powers of \(t \), which is why slope and curvature parameters enter here.

- Furthermore and significantly, square integrability implies
 \[
 I = |a_0|^2 + |a_1|^2 + \ldots \] [Parseval theorem]

- Outer function is known and can be expanded in a series in \(z \).
Power series and origin of the bound

- **Power series:** $h(z) = a_0 + a_1 z + a_2 z^2 + ...$ [Fourier series with non-negative powers of $e^{i\theta}$]. Guaranteed for such functions.

- Very important to note that the origin in the complex-t plane is mapped to the origin in the complex-z plane. Expansion in powers of z is related to expansion in powers of t, which is why slope and curvature parameters enter here.

- Furthermore and significantly, square integrability implies $I = |a_0|^2 + |a_1|^2 + ...$ [Parseval theorem]

- Outer function is known and can be expanded in a series in z.

- If the first n coefficients of the form factor are known, a bound on the quantity of interest is obtained after a finite number of terms.
Some explicit expressions

\[a_0 = h(0) = f_+(0)w(0), \]
Some explicit expressions

\[a_0 = h(0) = f_+(0)w(0), \]

\[a_1 = h'(0) = f_+(0)(w'(0) + \frac{2}{3} \langle r^2_{\pi K} \rangle t_+ w(0)), \]
Some explicit expressions

\[a_0 = h(0) = f_+(0)w(0), \]

\[a_1 = h'(0) = f_+(0)(w'(0) + \frac{2}{3}\langle r^2_{\pi K}\rangle t_+ w(0)), \]

\[a_2 = \frac{h''(0)}{2!} = \frac{f_+(0)}{2} \left[w(0) \left(-\frac{8}{3}\langle r^2_{\pi K}\rangle t_+ + 32 c t_+^2 \right) \right] \]
\[+ \frac{f_+(0)}{2} \left[2w'(0) \left(\frac{2}{3}\langle r^2_{\pi K}\rangle t_\pi \right) + w''(0) \right], \]
Improving the bounds

Improvement of the bound arises if $f_0(t)$ is known for some spacelike values of momenta corresponding to $z = x_i, i = 1, 2, 3, ...$
Improving the bounds

- Improvement of the bound arises if \(f_0(t) \) is known for some spacelike values of momenta corresponding to \(z = x_i, \ i = 1, 2, 3, \ldots \)

- Improve the bound by using imposing constraints using Lagrange multipliers.
Improving the bounds

- Improvement of the bound arises if $f_0(t)$ is known for some spacelike values of momenta corresponding to $z = x_i, i = 1, 2, 3, ...$
- Improve the bound by using imposing constraints using Lagrange multipliers.
- Can also be improved by imposing phase of the form factor for timelike moment in a continuous region, $a \leq t \leq b$.
Spacelike constraints

Spacelike constraints

- The case of two spacelike constraints is one where we solve:

\[
\begin{pmatrix}
I & a_0 & a_1 & a_2 & J_1 & J_2 \\
\begin{array}{rrrr}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & x_1 \\
0 & 0 & 1 & x_1^2 \\
1 & x_1 & x_1^2 & (1 - x_1^2)^{-1}
\end{array} & \begin{array}{rr}
1 & 1 \\
x_2 & x_2^2 \\
x_2 & x_2^2 \\
1 - x_2 & (1 - x_2)^{-1}
\end{array}
\end{pmatrix} = 0
\]

to obtain the bound, if \(a_i\) and \(J_i\) are known. Here \(I\) and \(J_i\) are known, and hence we can bound the \(a_i\)!
In the elastic region $t_+ \leq t \leq t_{\text{in}}$, the phase of the form factor is the scattering phase (Watson’s theorem). Can be included using Lagrange multipliers to obtain improved optimal constraints.
Inclusion of phase and modulus

- In the elastic region \(t_+ \leq t \leq t_{\text{in}} \), the phase of the form factor is the scattering phase (Watson’s theorem). Can be included using Lagrange multipliers to obtain improved optimal constraints.

- Availability of phase of the form factor and modulus can be used to find even more stringent constraints by adapting the formalism given earlier.
In the elastic region $t_+ \leq t \leq t_{in}$, the phase of the form factor is the scattering phase (Watson’s theorem). Can be included using Lagrange multipliers to obtain improved optimal constraints.

Availability of phase of the form factor and modulus can be used to find even more stringent constraints by adapting the formalism given earlier.

Idea is to defer the onset of the branch point to t_{in}
Inclusion of phase and modulus

- In the elastic region $t_+ \leq t \leq t_{\text{in}}$, the phase of the form factor is the scattering phase (Watson’s theorem). Can be included using Lagrange multipliers to obtain improved optimal constraints.

- Availability of phase of the form factor and modulus can be used to find even more stringent constraints by adapting the formalism given earlier.

- Idea is to defer the onset of the branch point to t_{in}

In the elastic region $t_+ \leq t \leq t_{\text{in}}$, the phase of the form factor is the scattering phase (Watson’s theorem). Can be included using Lagrange multipliers to obtain improved optimal constraints.

Availability of phase of the form factor and modulus can be used to find even more stringent constraints by adapting the formalism given earlier.

Idea is to defer the onset of the branch point to t_{in}

The present work is the only other known application of this powerful technique which is described in the following.
Consider the definition

\[\mathcal{O}(t) = \exp \left(\frac{t}{\pi} \int_{t_+}^{\infty} dt \frac{\delta(t')}{{t'}(t' - t)} \right), \]

where \(\delta(t) \) is the \(I = 1/2 \) elastic S-wave \(K\pi \) scattering phase, in the elastic region and arbitrary Lipschitz continuous above \(t_{in} \) (viz., the phase and its first derivative are continuous).
Consider the definition

\[\mathcal{O}(t) = \exp\left(\frac{t}{\pi} \int_{t^+}^{\infty} dt' \frac{\delta(t')}{{t}'({t}' - t)} \right), \]

where \(\delta(t) \) is the \(I = 1/2 \) elastic S-wave \(K\pi \) scattering phase, in the elastic region and arbitrary Lipschitz continuous above \(t_{in} \) (viz., the phase and its first derivative are continuous).

Since the Omnès function \(\mathcal{O}(t) \) fully accounts for the second Riemann sheet of the form factor, the function \(h(t) \), defined by

\[f_0(t) = h(t) \mathcal{O}(t), \]

is real analytic in the \(t \)-plane with a cut only for \(t \geq t_{in} \).
Consider the definition

\[\mathcal{O}(t) = \exp \left(\frac{t}{\pi} \int_{t_+}^{\infty} dt' \frac{\delta(t')}{t'(t' - t)} \right), \]

where \(\delta(t) \) is the \(I = 1/2 \) elastic S-wave \(K\pi \) scattering phase, in the elastic region and arbitrary Lipschitz continuous above \(t_{in} \) (viz., the phase and its first derivative are continuous).

Since the Omnès function \(\mathcal{O}(t) \) fully accounts for the second Riemann sheet of the form factor, the function \(h(t) \), defined by

\[f_0(t) = h(t) \mathcal{O}(t), \]

is real analytic in the \(t \)-plane with a cut only for \(t \geq t_{in} \).

Extremely clever trick which makes the method very useful
The new conformal variable is now:

\[z(t) = \frac{\sqrt{t_{\text{in}}} - \sqrt{t_{\text{in}} - t}}{\sqrt{t_{\text{in}}} + \sqrt{t_{\text{in}} - t}} \]

which maps the \(t \)-plane cut for \(t > t_{\text{in}} \) onto the unit disk \(|z| < 1 \), and

\[h(z) = f_0(t(z)) w(z) \omega(z) [O(t(z))]^{-1}, \]
The new conformal variable is now:

\[z(t) = \frac{\sqrt{t_{\text{in}}} - \sqrt{t_{\text{in}} - t}}{\sqrt{t_{\text{in}}} + \sqrt{t_{\text{in}} - t}}, \]

which maps the \(t \)-plane cut for \(t > t_{\text{in}} \) onto the unit disk \(|z| < 1 \), and

\[h(z) = f_0(t(z)) w(z) \omega(z) [\mathcal{O}(t(z))]^{-1}, \]

Note that the Omnès function makes an appearance through its outer function \((\omega(z)) \) and once as an inverse.
The new outer function is

\[w(z) = \frac{3(M_k^2 - M_{\pi}^2)}{16\sqrt{2\pi}t_{\text{in}}} \sqrt{1 - z} \left(1 + z\right)^{3/2} \left(1 + z(-Q^2)\right)^2 \]

\[\times \left(\frac{1 - z z(t_+)}{1 + z(t_+)}\right)^{1/2} \left(\frac{1 - z z(t_-)}{1 + z(t_-)}\right)^{1/2}, \]
The new outer function is

\[
 w(z) = \frac{3(M_K^2 - M^2)}{16\sqrt{2}\pi t_{\text{in}}} \frac{\sqrt{1-z}(1+z)^{3/2}(1+z(-Q^2))^2}{(1-z(z(-Q^2))^2} \\
\times \frac{(1-zz(t_+))^{1/2}(1-zz(t_-))^{1/2}}{(1+z(t_+))^{1/2}(1+z(t_-))^{1/2}},
\]

An additional outer function now enters which is given by

\[
 \omega(z) = \exp \left(\frac{\sqrt{t_{\text{in}} - t}}{\pi} \int_{t_{\text{in}}}^{\infty} dt' \frac{\ln |O(t')|}{\sqrt{t' - t_{\text{in}}} (t' - t)} \right).
\]
The new outer function is

\[w(z) = \frac{3(M_K^2 - M_\pi^2)}{16\sqrt{2\pi}t_{\text{in}}} \frac{\sqrt{1-z}(1+z)^{3/2}(1+z(-Q^2))^2}{(1-zz(-Q^2))^2} \times \frac{(1-zz(t_+))^{1/2}(1-zz(t_-))^{1/2}}{(1+z(t_+))^{1/2}(1+z(t_-))^{1/2}}, \]

An additional outer function now enters which is given by

\[\omega(z) = \exp \left(\frac{\sqrt{t_{\text{in}} - t}}{\pi} \int_{t_{\text{in}}}^{\infty} dt' \frac{\ln |\mathcal{O}(t')|}{\sqrt{t' - t_{\text{in}}}(t' - t)} \right). \]

The input for the bound is now given by

\[I = \chi_0(Q^2) - \frac{3}{2} \frac{t_+ t_-}{16\pi^2} \int_{t_+}^{t_{\text{in}}} dt \frac{[(t - t_+)(t - t_-)]^{1/2} |f_0(t)|^2}{t^2(t + Q^2)^2}. \]

Information of the modulus used in the integral.
Best results

- Our best constraints on the shape parameters of the scalar form factor
Best results

- Our best constraints on the shape parameters of the scalar form factor
- Comparison for results for vector form factor with no phase information, phase information, phase and modulus information
Best results

- Our best constraints on the shape parameters of the scalar form factor
- Comparison for results for vector form factor with no phase information, phase information, phase and modulus information
- Our best constraints on the shape parameters of the vector form factor
Best results

- Our best constraints on the shape parameters of the scalar form factor
- Comparison for results for vector form factor with no phase information, phase information, phase and modulus information
- Our best constraints on the shape parameters of the vector form factor
- Region where zeros of the form factor are excluded
Best results for scalar shape parameters

![Graph showing best results for scalar shape parameters including data from Abouzaid, KTeV (2009) and Ambrosino, KLOE (2007).]
Best results for scalar shape parameters with CT

![Graph showing best results for scalar shape parameters with CT]
Scalar experiments – summary

-0.02 0 0.02 0.04 0.06

\(\lambda \)

- Ambrosino, KLOE (2007)
- Sciascia, Flavianet Kaon WG (2008)
- Amsler, PDG (2009)
- Abouzaid, KTeV (2009)

Unitarity and Analyticity Constraints... – p.30/42
Updated summary

Unitarity and Analyticity Constraints... – p.31/42
Results for vector shape parameters

Unitarity and Analyticity Constraints... – p.32/42
Best results for vector shape parameters

Zeros of form factors

- Zeros predicted for, e.g., scattering amplitudes (Adler zeros), partial waves (zero on first sheet \iff pole on second sheet)
Zeros of form factors

- Zeros predicted for, e.g., scattering amplitudes (Adler zeros), partial waves (zero on first sheet \iff pole on second sheet)
- No prediction for form factors
Zeros of form factors

- Zeros predicted for, e.g., scattering amplitudes (Adler zeros), partial waves (zero on first sheet \iff pole on second sheet)
- No prediction for form factors
- Influences dispersive representations for form factors (we illustrate with figures from V. Bernard, M. Oertel, E. Passemar and J. Stern, Physical Review D 80 (2009) 034034)
Zeros of form factors

- Zeros predicted for, e.g., scattering amplitudes (Adler zeros), partial waves (zero on first sheet \iff pole on second sheet)
- No prediction for form factors
- Influences dispersive representations for form factors (we illustrate with figures from V. Bernard, M. Oertel, E. Passemar and J. Stern, Physical Review D 80 (2009) 034034)
- Our method allows us search for zeros by using it as a SL constraint for both real and complex zeros
Influence of timelike zeros

\[f_0(t) \]

Unitarity and Analyticity Constraints... – p.35/42
Influence of spacelike zeros

![Graph showing the influence of spacelike zeros on the function $f_0(t)$ against t in GeV2. The graph compares different scenarios with and without zero crossings, labeled as $T_0 = -0.1$ GeV2 and $T_0 = -1$ GeV2.](image)
Absence of zeros for the vector
Absence of zeros for the scalar including CT
Results

- We have reviewed the status of the vector and scalar form factors which are of fundamental importance to the standard model.
We have reviewed the status of the vector and scalar form factors which are of fundamental importance to the standard model.

We have introduced new methods to find stringent constraints using chiral symmetry, perturbative QCD, dispersion relations and unitarity.
Results

- We have reviewed the status of the vector and scalar form factors which are of fundamental importance to the standard model.
- We have introduced new methods to find stringent constraints using chiral symmetry, perturbative QCD, dispersion relations and unitarity.
- The results are very stringent in the scalar form factor case.
Results

- We have reviewed the status of the vector and scalar form factors which are of fundamental importance to the standard model.
- We have introduced new methods to find stringent constraints using chiral symmetry, perturbative QCD, dispersion relations and unitarity.
- The results are very stringent in the scalar form factor case.
- Restricts the range of the slope to $\sim 0.01 - 0.02$, gives a near linear correlation with the curvature, restricts $\overline{\Delta}_{CT}$ to a small range.
Results

- We have reviewed the status of the vector and scalar form factors which are of fundamental importance to the standard model.
- We have introduced new methods to find stringent constraints using chiral symmetry, perturbative QCD, dispersion relations and unitarity.
- The results are very stringent in the scalar form factor case.
- Restricts the range of the slope to $\sim 0.01 - 0.02$, gives a near linear correlation with the curvature, restricts Δ_{CT} to a small range.
- Eliminated zeros in significant portion of low complex energy plane and also we have ruled out real zeros for the vector in the region $-0.28 \text{GeV}^2 \leq t \leq 0.22 \text{GeV}^2$ and for the scalar in the region $-1.81 \text{GeV}^2 \leq t \leq 0.93 \text{GeV}^2$.
Results

- We have reviewed the status of the vector and scalar form factors which are of fundamental importance to the standard model.
- We have introduced new methods to find stringent constraints using chiral symmetry, perturbative QCD, dispersion relations and unitarity.
- The results are very stringent in the scalar form factor case.
- Restricts the range of the slope to $\sim 0.01 - 0.02$, gives a near linear correlation with the curvature, restricts Δ_{CT} to a small range.
- Eliminated zeros in significant portion of low complex energy plane and also we have ruled out real zeros for the vector in the region $-0.28\text{GeV}^2 \leq t \leq 0.22\text{GeV}^2$ and for the scalar in the region $-1.81\text{GeV}^2 \leq t \leq 0.93\text{GeV}^2$.
- Tests the consistency of the determinations.
Recent work on inputs

- A. Bazavov et al., arXiv:1312.1228 [hep-ph] give $f_+(0) = 0.9704(32)$; S. Aoki et al., arXiv:1310.855 [hep-lat] $f_+(0) = 0.9624(36)$ (2+1 flavors) and $0.9595(9)$ (2 flavors)
Recent work on inputs

- A. Bazavov et al., arXiv:1312.1228 [hep-ph] give $f_+(0) = 0.9704(32)$; S. Aoki et al., arXiv:1310.855 [hep-lat] $f_+(0) = 0.9624(36)$ (2+1 flavors) and 0.9595(9) (2 flavors)

- S. Aoki et al., arXiv:1310.855 [hep-lat] $\frac{F_K}{F_\pi} = 1.194(4)$ (2+1 flavors) and 1.192(12) (2 flavors)
Recent work on inputs

- A. Bazavov et al., arXiv:1312.1228 [hep-ph] give $f_+(0) = 0.9704(32)$; S. Aoki et al., arXiv:1310.855 [hep-lat] $f_+(0) = 0.9624(36)$ (2+1 flavors) and $0.9595(9)$ (2 flavors)

- S. Aoki et al., arXiv:1310.855 [hep-lat] $F_K/F_\pi = 1.194(4)$ (2+1 flavors) and 1.192(12) (2 flavors)

- V. Bernard, arXiv:1311.2569 [hep-ph] carries out a combined analysis of τ decays and πK scattering to obtain slope and curvature of the vector form factor, easily accommodated in our bounds. Also obtains a new value for scalar form factor at the CT point consistent with prior determinations, but with larger errors, as this uses only dispersive methods.
$D - \pi$ form factors

- Uses in an essential way the heavy-light correlators computed by Chetyrkin and Steinhauser
$D - \pi$ form factors

- Uses in an essential way the heavy-light correlators computed by Chetyrkin and Steinhauser
- Non-perturbative contributions of Generalis
$D - \pi$ form factors

- Uses in an essential way the heavy-light correlators computed by Chetyrkin and Steinhauser
- Non-perturbative contributions of Generalis
- Extensive program leads to constraints
$D - \pi$ form factors

- Uses in an essential way the heavy-light correlators computed by Chetyrkin and Steinhauser
- Non-perturbative contributions of Generalis
- Extensive program leads to constraints
- Phenomenological determinations generally consistent but close to the edges of allowed domains
$D - \pi$ form factors

- Uses in an essential way the heavy-light correlators computed by Chetyrkin and Steinhauser

- Non-perturbative contributions of Generalis

- Extensive program leads to constraints

- Phenomenological determinations generally consistent but close to the edges of allowed domains

- Far less stringent than in the $\pi - K$ case
Conclusions

- Rich and detailed program of analyticity and unitarity bounds
Conclusions

- Rich and detailed program of analyticity and unitarity bounds
- Stringent constraints made possible by theory and detailed phenomenological inputs
Conclusions

- Rich and detailed program of analyticity and unitarity bounds
- Stringent constraints made possible by theory and detailed phenomenological inputs
- Offers a test of chiral theorems at high precision
Conclusions

- Rich and detailed program of analyticity and unitarity bounds
- Stringent constraints made possible by theory and detailed phenomenological inputs
- Offers a test of chiral theorems at high precision
- Challenges experimental determinations
Conclusions

- Rich and detailed program of analyticity and unitarity bounds
- Stringent constraints made possible by theory and detailed phenomenological inputs
- Offers a test of chiral theorems at high precision
- Challenges experimental determinations
- Tests consistency of lattice determinations
Conclusions

- Rich and detailed program of analyticity and unitarity bounds
- Stringent constraints made possible by theory and detailed phenomenological inputs
- Offers a test of chiral theorems at high precision
- Challenges experimental determinations
- Tests consistency of lattice determinations
- Proves the validity of general principles as a testing ground of SM predictions