IMPROVED BRANCHING FRACTION MEASUREMENT FOR $B^0 \rightarrow J/\Psi \pi^+ \pi^-$ DECAY MODE

Rajeev K Sharma & Monica
Deptt. of Physics
Punjab Agri. University,
Ludhiana-141004.

@

XXI DAE-BRNS HEP Symposium
11/12/14
OUTLINE

- Motivation
- Event Selection
- Reconstruction
- Selection Variable
- Conclusion
Motivation

- $B^0 \rightarrow J/\psi \pi^+ \pi^-$ is flavor non-specific final state and is Cabibbo-suppressed decay.
- Tree and penguin amplitudes which contribute to $b \rightarrow c \bar{c}d$ are of same order in the sine of Cabibbo angle.

![Diagram](image)

- So far, other experiments have provided limited knowledge about $B^0 \rightarrow J/\psi \pi^+ \pi^-$ because of their limited statistics.
- By observation of di-pion invariant mass spectrum, sources of pion pair can be resolved into resonant and non-resonant contributions.

- The components contributing to di-pion are also provide important information to understand strong interaction effects in B decays.
RECONSTRUCTION/SELECTION

- **Reconstruction mechanism:**

 - $B^0 \rightarrow J/\psi \pi^+\pi^-$

 - $e^+ e^- \rightarrow \mu^+ \mu^-$

- **J/ψ and $\pi^+\pi^-$ Reconstruction:**
 Standard Charmonium group selection criteria

- **MC Sample:**

 - 100,000 signal MC events are generated using EvtGen, where detector response is simulated using GEANT4.

 - Large inclusive J/ψ MC sample to study background etc.

- **Event Selection:**

 - Events which are skimmed as psiskim are used in analysis.

 - Ratio of second to zeroth Fox-Wolfram moments $R_2 < 0.5$

 - $|dz| < 5$ cm and $|dr| < 0.5$ cm

 - 0.4 rad $< \theta < 2.43$ rad
J/ψ Reconstruction

- J/ψ reconstruction is performed using its leptonic decays

 $J/\psi \rightarrow e^+e^-$ or $\mu^+\mu^-$

- μ selection: $\text{muon.Likelihood} > 0.1$

- e selection: $\text{eid.prob()} > 0.01$

- Invariant mass window for $\mu^+\mu^-(e^+e^-)$ channel:

 -0.06 (-0.15) GeV/$c^2 \leq M_{\mu^+\mu^-} - M_{J/\psi} \leq 0.036$ GeV/c^2
B^0 Reconstruction

- $\Upsilon(4S)(10.58 \text{ GeV}/c^2) \rightarrow B^0/B^0$; both B_s are produced almost at rest in CMS of $\Upsilon(4S)$; $M_B=5.29 \text{ GeV}/c^2$

- Kinematics variables M_{bc} and ΔE are used to separate the signal from the background.
 - $M_{bc} = \sqrt{(E_{\text{beam}})^2 - (p_B)^2}$
 - $\Delta E = E_B - E_{\text{beam}}$; ($E_{\text{beam}} = \sqrt{s}/2 = 5.29$ GeV)

- Signal region:
 - $-0.04 \text{ GeV} < \Delta E < 0.04 \text{ GeV}$
 - $5.27 \text{ GeV}/c^2 < M_{bc} < 5.29 \text{ GeV}/c^2$

- Optimized by calculating FOM

- Charged pions selection:
 - $R_{\pi/K} = L_\pi/(L_\pi + L_K) > 0.6$
 - $\text{eid.prob}(3,-1,5) < 0.1$
 - $\muon_likelihood() < 0.9$

- To reduce $B^0 \rightarrow J/\Psi K_s (K_s \rightarrow \pi^+\pi^-)$ & backgrounds due to accidently formed pion pairs \rightarrow (distance between reconstructed vertices of J/Ψ and $\pi^+\pi^-$ pair) $< 3 \text{ mm}$

- If more than one $J/\Psi \pi^+\pi^-$ event satisfy $-0.2 \text{ GeV} < \Delta E < 0.2 \text{ GeV}$ and $M_{bc} > 5.20 \text{ GeV}/c^2$ \rightarrow pion pair with least χ^2 is selected
Several sources of di-pion system in $B^0 \rightarrow J/\psi \pi^+\pi^-$ final state: $B^0 \rightarrow J/\psi \rho^0$ contribute predominantly.

Additional possible contributions:
- $B^0 \rightarrow J/\psi f_2$
- non-resonant $B^0 \rightarrow J/\psi \pi^+\pi^-$

Monte Carlo samples for these decay modes are prepared.

<table>
<thead>
<tr>
<th>B0 Decay Mode</th>
<th># of Events</th>
<th>Decay Model</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \rightarrow J/\psi \rho^0$</td>
<td>100,000</td>
<td>SVV</td>
<td>0.24 ± 0.007</td>
</tr>
<tr>
<td>$B^0 \rightarrow J/\psi f_2$</td>
<td>100,000</td>
<td>PHSP & TSS</td>
<td>0.27 ± 0.007</td>
</tr>
<tr>
<td>$B^0 \rightarrow J/\psi \pi^+\pi^-$</td>
<td>100,000</td>
<td>PHSP</td>
<td>0.28 ± 0.007</td>
</tr>
</tbody>
</table>
Signal MC Events

$M_{bc} - \Delta E$ 2D distribution

ΔE projection in $5.27 < M_{bc} < 5.29 \text{ GeV/c}^2$

M_{bc} projection in $-0.04 < \Delta E < 0.04 \text{ GeV}$
EXPERIMENTAL DATA

$M_{bc} - \Delta E$ 2D distribution

ΔE projection in $5.27 < M_{bc} < 5.29$ GeV/c^2

M_{bc} projection in $-0.04 < \Delta E < 0.04$ GeV
Background Study: MC

- Major source of background is B decays having a J/Ψ candidate in final state.
- Background estimation is carried out by large inclusive J/Ψ MC sample of size $\sim 3.88 \times 10^{10}$
- Peaking background in $B^0 \rightarrow J/\Psi \pi^+ \pi^-$ decay mode is due to decay modes whose event kinematics is quite similar to the signal mode, few most probable are:

 $B^0 \rightarrow J/\Psi K_s^0$

 $B^0 \rightarrow J/\Psi K^{*0}$

 $B^0 \rightarrow J/\Psi K^0*(1430)^0$

 $B^0 \rightarrow J/\Psi K_{2}^{*}(1430)^0$

 $B^\pm \rightarrow J/\Psi K^\pm$

 $B^\pm \rightarrow J/\Psi \pi^\pm$
ΔE Distribution

- Experimental ΔE distribution superimposed with background expectations obtained from inclusive J/ψ MC sample.
- $B^0 \rightarrow J/\psi K_s^0$ forms a peaking structure in the signal region → *can be subtracted by using $M_{\pi^+\pi^-}$ distribution*
Fit to \(\Delta E\) Distribution

- Signal shape being modeled by Gaussian
- Decays \(B^0 \rightarrow J/\psi K^*\), \(B^0 \rightarrow J/\psi K^0(1430)^0\), \(B^0 \rightarrow J/\psi K_2^*(1430)^0\), \(B^\pm \rightarrow J/\psi K^\pm\), \(B^\pm \rightarrow J/\psi \pi^\pm\) are expressed by smoothed histograms
- Remaining backgrounds are expressed by a 1\(^{st}\) order polynomial

\[\text{N}_{\text{events}} = 435 \pm 29 \]
$M_{\pi+\pi^-}$ DISTRIBUTION

- $B^0 \rightarrow J/\Psi K_s^0$ subtraction is done by studying the $M_{\pi+\pi^-}$ distribution to obtain the net $B^0 \rightarrow J/\Psi \pi^+ \pi^-$ signal yield
- Fitting \rightarrow Double Gaussian (shape is fixed to MC)

Net $B^0 \rightarrow J/\Psi \pi^+ \pi^-$ events = 334 ± 40
Next Plan

- To perform the fit to the pion pair invariant mass spectrum in order to resolve the contributions of the decays in $B^0 \to J/\psi \pi^+ \pi^-$ final state
- Following contributions will be taken into account:
 - $B^0 \to J/\psi \rho^0$
 - $B^0 \to J/\psi f_2$
 - non resonant $B^0 \to J/\psi \pi^+ \pi^-$
- PDFs are finalized for these decay modes and their contributions will be determined
- Belle Note writing process is underway