$K^*{}^0$ production in Pb-Pb and pp collisions at LHC

Kishora Nayak
(for ALICE Collaboration)
National Institute of Science Education and Research, Bhubaneswar-751005, India

Outline
- Motivation
- $K^*{}^0$ resonance reconstruction in ALICE
- Results
 - Nuclear modification factor
- Summary

K. Nayak DAE-HEP Symposium 8-12 December 2014, IIT-Guwahati
Resonances in heavy ion collision

Resonances have very short lifetimes about few fm/c:

τ resonance \sim τ fireball

- **Yield:**
 - Information about regeneration and re-scattering

- **Nuclear modification factor:**
 - Parton energy loss in the medium

- **Comparison with particles that have similar mass, baryon number and strangeness content:**
 - Particle production mechanisms

Basic properties of K^0

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>0.89594 ± 0.0022 (GeV/c^2)</td>
</tr>
<tr>
<td>Width</td>
<td>0.0487 ± 0.008 (GeV/c^2)</td>
</tr>
<tr>
<td>Decay modes</td>
<td>K^+\pi^-, K^-\pi^+</td>
</tr>
<tr>
<td>Lifetime</td>
<td>\sim 4 fm/c</td>
</tr>
<tr>
<td>Quark content</td>
<td>d\bar{s}, \bar{d}s</td>
</tr>
</tbody>
</table>

K. Nayak DAE-HEP Symposium 8-12 December 2014, IIT-Guwahati
Particle Identification in ALICE

VZERO scintillator detector:
- centrality determination in Pb-Pb

Energy loss (dE/dx) in the gas medium of TPC

Vertex position determination
Event characterization

- Impact parameter can't be determined experimentally.
- By fitting the data with Glauber model number of participant nucleons is extracted which is related to impact parameter.

K*⁰ invariant mass

Data Set: Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV collected in 2011.

- Higher statistics for central and semi-central events with respect to the 2010 dataset.
- Mixed event background subtraction
- Signal is fitted with Breit-Wigner + Quadratic residual background

Higher statistics for central and semi-central events with respect to the 2010 dataset.

Finer centrality binning

High-p_T reach

K. Nayak DAE-HEP Symposium 8-12 December 2014, IIT-Guwahati
K^*(892) p_T spectra in Pb-Pb collisions

ALICE Preliminary

- **2010 Pb-Pb data**: \(p_T \leq 5 \text{ GeV/c}

- **New results**: 2011 Pb-Pb data extend \(p_T \) reach of measurement up to 10 GeV/c

K. Nayak DAE-HEP Symposium 8-12 December 2014, IIT-Guwahati
K*⁰ nuclear modification factor: R_{AA}

$$R_{AA} = \frac{1}{<T_{AA}>} \frac{d^2 N_{AA}/dp_T dy}{d^2 \sigma_{pp}/dp_T dy}$$

At high p_T:
- For all centralities $R_{AA} < 1$
- Larger suppression in most central collisions

R_{AA} of K^0 and charged hadrons at low-p_T

Low p_T (<2 GeV/c): $R_{AA}(K^0) < R_{AA}$ (charged hadron) --> may be due to re-scattering effect

R_{AA} of K^*, π, K, p at moderate p_T

Moderate p_T ($2 < p_T < 5$ GeV/c) \rightarrow K^* suppression is similar to K (identical strangeness content)

\(R_{AA} \) of \(K^*, \pi, K, p \) at high-\(p_T \)

- High-\(p_T \) (5 < \(p_T \) < 8 GeV/c) --> \(K^0 \) suppression is similar to \(\pi, K \)
- High-\(p_T \) (> 8 GeV/c) --> All hadrons have similar suppression

K*⁰ resonance production has been measured in a wide momentum range in Pb-Pb collisions in different centrality intervals with the ALICE experiment at LHC.

High-\(p_T \) reach and finer centrality bins in 2011 data as compared to 2010.

Centrality evolution of K*⁰ \(R_{AA} \) is observed.

In central collisions, \(R_{AA}(K^*) < R_{AA}(\text{ch. had}) \) at low-\(p_T \) may be due to rescattering effect.

At intermediate-\(p_T \): K*⁰ suppression is of similar order to that of the K meson, with identical strange content.

For 5<\(p_T <8 \text{ GeV/c} \), K*⁰ suppression is similar to K and \(\pi \).

For \(p_T > 8 \text{ GeV/c} \) all hadrons are similarly suppressed.
Thank You