Measurement of Φ^{*} variable in Drell-Yan η events in p-p collisions at CMS

XXI DAE-SYMPOSIUM
IIT Guwahati
10 Dec, 2014

Genius Walia1
M.Kaur1, R.M.Chatterjee2, K.Majumdar2, M.Guchait2
1. Panjab University, Chandigarh
2. TIFR, Mumbai
Outline of Talk

➢ Compact Muon Solenoid
➢ ϕ_η^* Definition
➢ Data and MC Samples
➢ Selection Criteria
➢ Data-MC Validation
➢ Data-Driven Background Estimation
➢ Unfolding
➢ Conclusions
Compact Muon Solenoid

➢ The goal of CMS experiment is to investigate a wide range of physics, including the search for the Higgs boson, extra dimensions, & particles that could make up darkmatter.
Motivation for Φ^* variable

- Drell-Yan process at LHC is one of most well studied, both theoretically and experimentally
- Produces non-zero transverse momentum (p_{Z_T}) of the dilepton system
- Direct measurements of the Z/γ^* spectrum at low p_{Z_T} is limited by experimental resolution & systematic uncertainties rather than by the statistics
- This affects the choice of bin widths and the ultimate precision of the p_{Z_T} spectrum
- New variable was suggested, “Φ^*” which has better experimental resolution & smaller sensitivity to experimental systematic uncertainties.
- Depends only on the angles of the muon trajectories

\[\Phi_{\eta}^* = \tan \left(\varphi_{\text{acop}}/2 \right) \sin \left(\theta_{\eta}^* \right) \]

- \varphi_{\text{acop}} = (\pi - \Delta \Phi)
 - \Delta \Phi: azimuthal opening angle between two leptons

- \theta_{\eta}^*: scattering angle of the leptons w.r.t. proton beam direction in rest frame of dilepton system

- \cos \left(\theta_{\eta}^* \right) = \tanh \left[\left(\eta^- - \eta^+ \right)/2 \right]
 - \eta^- and \eta^+: pseudorapidities of the -vely & +vely charged leptons

- \Phi_{\eta}^* depends exclusively on directions of two lepton tracks

† D0 Collaboration, arXiv:1410.8052

10.12.2014 XXI D.
Analysis Flow Chart

DATA -> BGND SUBTRACTION -> UNFOLDING -> SIGNAL SIMULATION

Efficiency Correction

Muon momentum Scale correction

e-µ scale factor(data Driven method)

Lead µ (trig match): \(p_T > 30 \text{ GeV} \), \(|\eta| < 2.1 \)
Sub-leading µ : \(p_T > 20 \text{ GeV} \), \(|\eta| < 2.4 \)
60 GeV < \(M(\mu\mu) < 120 \text{ GeV} \)

Data theory comparison

PU re-weighting
Work in Progress, 19.485 fb$^{-1}$, \sqrt{s}=8TeV

Data/MC

Number of Events

M_{jj}

Data/MC

Q_T

Work in Progress, 19.485 fb$^{-1}$, \sqrt{s}=8TeV

Data/MC

Number of Events

Z_T

DA
Work in progress, 19.485 fb^{-1}, \sqrt{s} = 8 \, TeV
Sources of Background

➢ \(q\bar{q} \rightarrow \tau^+\tau^-+X \) : Dominant in the low and intermediate invariant mass region, \(\sim 15 \text{ GeV/c}^2 < M_{\mu\mu} < 70 \text{ GeV/c}^2 \).

➢ \(t\bar{t}+\text{jets} \) : muons are mainly due to the leptonic decays of W-bosons produced in top and anti-top decays. Dominant in the high-mass region of DY mass spectrum.

➢ **Di-bosons Production (WW, WZ and ZZ)** :
 \(Z \rightarrow \mu\mu, W \rightarrow \mu\nu \) can lead to two muons in the final state.

➢ **W + jets** : \(W \rightarrow \mu\nu \) having branching ratio of about 11%, can pose as a background, when one of the associated jets, fakes as muon. Production rate of W+jets events is large at the LHC energy.
Data Driven Background Estimation

- Level of Background is quite low \((10^{-3})\)

- Estimate the background to the signal channel from e-\(\mu\) sample.

\[
\frac{\text{Data} \rightarrow e\mu}{\text{Data} \rightarrow \mu\mu} = C = \frac{\text{MC} \rightarrow e\mu}{\text{MC} \rightarrow \mu\mu} \quad \text{[Here C is a constant]}
\]

\[
\Rightarrow \text{Data} \rightarrow \mu\mu = \frac{\text{MC} \rightarrow \mu\mu}{\text{MC} \rightarrow e\mu} \times \text{Data} \rightarrow e\mu
\]

- Event Selection: “Good” electron-muon pair, close to \(Z_{\text{mass}}\) peak was selected.
 - \(60 < M_{ll} < 120\) (for “Z” candidate)

- Kinematical Cuts:
 - muon: \(P_T > 25\ \text{GeV}, \ |\eta| < 2.1\)
 - electron: \(P_T > 20\ \text{GeV}, \ |\eta| < 2.4\)
Background Estimation

Work in Progress, 19.485 fb⁻¹, √s=8TeV

![Graphs showing background estimation](image)

10.12.2014
Unfolding Φ^* Spectrum in data

- Effects of detector resolution on Φ^* spectrum are corrected by unfolding.

$$x = A^{-1} b$$

X: True unfolded Φ^* distribution

b: Measured Φ^* distribution in data (reco Φ^*)

A: Response matrix, describes detector behavior determined from MC

Work in Progress....
ATLAS Results

ATLAS Results, 4.6 fb$^{-1}$, $\sqrt{s}=7$ TeV

- e^+e^- Data 2011
- $\mu^+\mu^-$ Data 2011
- RESBOS

$\sqrt{s} = 7$ TeV
$|\eta^\ell| < 2.4$
$p_T^\ell > 20$ GeV
66 GeV $< m_{\ell\ell} < 116$ GeV

CMS Results

Work in Progress, 19.485 fb$^{-1}$, $\sqrt{s}=8$ TeV

- Data
- RESBOS

Work in Progress....
Conclusions

➢ Presented the preliminary results for the ϕ_{η}^* measurement at $\sqrt{s} = 8$ TeV for integrated luminosity of 19.5 fb$^{-1}$.

➢ Data shows overall a good agreement with the Monte-Carlo.

➢ In the process of comparing the result of the measurement with generators like MCFM and FEWZ.

➢ Currently working on calculating the systematics uncertainties.
Thanks