Higher harmonic flow of ϕ meson in STAR at RHIC

Mukesh Kumar Sharma (for the STAR Collaboration)
University of Jammu, Jammu, INDIA

OUTLINE:

✓ Introduction and Motivation
✓ STAR Detector and Data set
✓ Analysis Method
✓ Results
✓ Summary
Introduction: Azimuthal anisotropy

Azimuthal anisotropy is a phenomenon observed in high-energy particle collisions, where the particles produced tend to be emitted in specific azimuthal directions. The azimuthal angle, denoted by ψ_R, is the angle of the reaction plane (spanned by impact parameter and beam direction) with respect to the beam axis. The particle distribution in the pseudorapidity η and azimuthal angle ϕ is described by the reaction plane direction ψ_R. The anisotropy coefficients v_2, v_3, and v_4 are called elliptic, triangular, and quadrangular flow, respectively.

The probability distribution of particles with respect to the azimuthal angle ϕ can be expressed as:

$$\frac{dN}{d\phi} \propto \frac{1}{2\pi} \left[1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \psi_R)) \right]$$

where $\phi = \tan^{-1}\left(\frac{p_y}{p_x}\right)$ and $v_n = \langle \cos[n(\phi - \psi_R)] \rangle$.

- ψ_R is the azimuthal angle of the reaction plane (spanned by impact parameter and beam direction).
- v_2, v_3, and v_4 are called elliptic, triangular, and quadrangular flow.

Mukesh Sharma, University of Jammu, INDIA
Motivation

- ϕ meson has small hadronic interaction cross section. Thus ϕ meson v_n is less affected by later stage hadronic interaction. Hence ϕ meson is a clean probe to study the medium created in the early stage of collisions.

- The ratios between various harmonics can be used to understand the properties of the system created in heavy-ion collisions.

Coalescence Model

$$\frac{v_{4,M}(2p_T)}{v_{2,M}(2p_T)} \approx \frac{1}{4} + \frac{1}{2} \frac{v_{4,q}(p_T)}{v_{2,q}(p_T)}$$

Where $v_{n,q}(p_T) = kv_{n/2,q}(p_T)$

If $k=1$

$$\frac{v_{4,M}(2p_T)}{v_{2,M}(2p_T)} \approx 0.75$$

Hydro Model

$$\frac{v_4}{v_2} = 0.5$$

$$\frac{v_3}{v_2} = \text{Constant at high } p_T$$

J. Adams et al. (STAR Collaboration), Nucl. Phys. A 757, 102 (2005).

Mukesh Sharma, University of Jammu, INDIA
Data Set	**Vertex Cut**	**Trigger**	**No. of events**
AuAu 200 GeV (Run 11) | \(|V_z| < 30 \text{ cm}\) | MinBias | 560 Million

Magnetic field 0.5 Tesla
Full azimuthal coverage (0, 2\(\pi\))
\(|\eta| < 1.0\) for TPC and \(|\eta| < 0.9\) for TOF
Particle Identification with STAR TPC and TOF

- **TPC**
 - Full azimuthal coverage (0, 2π)
 - Identifies kaon upto p = 0.65 GeV/c
 - **Bethe Bloch Formula**
 \[
 -\left\langle \frac{dE}{dx} \right\rangle \sim A \left(1 + \frac{m^2}{p^2} \right)
 \]
 - Particle identifies using
 \[
 N\sigma = \frac{1}{R} \times \log \left(\frac{dE/dx_{measured}}{dE/dx_{theory}} \right)
 \]

- **TOF**
 - Full azimuthal coverage (0, 2π)
 - Kaon can be identified for p > 0.65 GeV/c
 - **Time of Flight**
 \[
 \langle t \rangle = \frac{L}{\beta} \quad \frac{1}{\beta} = \sqrt{1 + \frac{m^2}{p^2}}
 \]

Mukesh Sharma, University of Jammu, INDIA
Event Plane Resolution

- Event Plane defined as:
 \[\Psi_n = \left(\tan^{-1} \left[\frac{\sum_i w_i \sin(n\phi_i)}{\sum_i w_i \cos(n\phi_i)} \right] \right) / n \]

- Event Plane angle calculated in two different windows ‘west’ (\(\eta > 0.075 \)) and ‘east’ (\(\eta < -0.075 \))

- Event Plane Resolution then given by:
 \[R = \sqrt{< \cos[n(\Psi_n^{\text{west}} - \Psi_n^{\text{east}})]}> \]

- Event- by- event resolution correction
 \[\langle v_n \rangle = \langle \frac{v_{n,\text{obs}}}{R} \rangle \]

- ϕ meson decay -> K^+K^- (B.R 48.9 %)
- Background reconstructed from mixed events
- ϕ signal is fitted with BW +1st order polynomial

$\langle \cos(n(\Phi - \Psi)) \rangle$

$= \frac{v_{n}^{Sig}}{Sig + Bg} (m_{inv}) + \frac{v_{n}^{Bg}}{Sig + Bg} (m_{inv})$

$\chi^2 / ndf = 95.67 / 105$

$v3 = 0.0199 \pm 0.0032$
$p1 = 0.003943 \pm 0.000109$
$p2 = 0.02477 \pm 0.00111$
$p3 = 0.01239 \pm 0.00150$
$p4 = -0.02408 \pm 0.00086$

$\frac{\text{Counts}}{1 \text{ MeV}}$

$\frac{\text{Counts}}{1 \text{ MeV}}$

$\frac{\text{Counts}}{1 \text{ MeV}}$

$\frac{\text{Counts}}{1 \text{ MeV}}$

The magnitude of $v_2(\psi_2)$ is greater than $v_3(\psi_3)$ and $v_4(\psi_4)$ for all centralities.

- v_n increases with p_T and has a maximum value in 2-3 GeV/c.
\(v_n : \) Centrality dependence

- \(v_2(\psi_2) \) shows strong centrality dependence
- No centrality dependence for \(v_3(\psi_3) \) and \(v_4(\psi_4) \) within statistical uncertainties
The v_3/v_2 ratio is constant for $p_T > 1.5$ GeV/c.
v_4/v_2^2 vs p_T

0-80%

$v_4(\psi_4)/v_2^2 = 1.90 \pm 0.37$

0-30%

$v_4(\psi_4)/v_2^2 = 2.84 \pm 0.60$

30-80%

$v_4(\psi_4)/v_2^2 = 0.56 \pm 0.42$
Summary

- We have presented $v_3(p_T)$ and $v_4(p_T)$ of ϕ meson in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV.
- v_n increases with p_T and has a maximum value in 2-3 GeV/c.
- No centrality dependence for $v_3(\psi_3)$ and $v_4(\psi_4)$ within statistical uncertainties.
- v_3/v_2 and $v_4(\psi_4)/v_2^2$ ratios are calculated in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV.
- v_3/v_2 ratio is constant for $p_T > 1.5$ GeV/c.
Thank you
Back up Slides

Mukesh Sharma, University of Jammu, INDIA
• Corrected by Recentre + Shift method
• Fitted with $p0(1+p1\cos[n\Psi_n] + p2\sin[n\Psi_n])$
• η gap between east & west event plane is 0.1